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Abstract 

This paper presents a mathematical model which predicts both the major qualitative features and, within 
experimental error, the quantitative details of a class of perturbed and unperturbed large-amplitude, voluntary 
movements performed at intermediate speed by primates. A feature of the mathematical model is that a concise 
description of the behavioral organization of the movement has been formulated which is separate and distinct 
from the description of the dynamics of movement execution. 

Based on observations of voluntary movements in primates, the organization has been described as though 
the goal were to make the smoothest movement possible under the circumstances, i.e., to minimize the 
accelerative transients. This has been formalized by using dynamic optimization theory to determine the 
movement which minimizes the rate of change of acceleration (jerk) of the limb. 

Based on observations of muscle mechanics, the concept of a “virtual position” determined by the active 
states of the muscles is rigorously defined as one of the mechanical consequences of the neural commands to 
the muscles. This provides insight into the mechanics of perturbed and unperturbed movements and is a useful 
aid in the separation of the descriptions of movement organization and movement execution. 

This paper presents a mathematical model of a class of 
voluntary arm movements observed in monkeys. The move- 
ments which have been considered are large-amplitude, single- 
joint, elbow motions at intermediate speed. There are, of course, 
many possible mathematical models of any given phenomenon; 
the work presented here is an attempt to capture in a single 
description both the major global features of the way the 
movement is organized and the finer quantitative details of the 
way the movement is executed. Accordingly, dynamic optimi- 
zation theory (Bryson and Ho, 1975) has been used. Briefly, 
the technique is to define a criterion function (see below) which 
models the goal or objective of the movement. The criterion 
function assigns a real number to every possible movement 
trajectory. A differential equation is also formulated which 
models the relation between system outputs (e.g., positions) 
and inputs (e.g., neural activities). The methods of variational 
calculus are then applied to find from the infinite set of possible 
trajectories the one which minimizes the criterion function 
subject to the dynamic constraints imposed by the differential 
equations and the conditions imposed at the boundaries (i.e., 
the start and finish of the movement). In this paper a criterion 
function is presented which adequately describes observed be- 
havior and which may represent an organizing principle under- 
lying voluntary movement. 

1 This research was supported by National Institute of Neurological 
Disease and Stroke Research Grant NS09343, National Institute of 
Arthritis, Metabolism, and Digestive Diseases Grant AM26710, Na- 
tional Aeronautics and Space Administration Grant NAG 2-126, and 
National Eye Institute Grant EY02621. I am indebted to Drs. Emilio 
Bizzi, Neri Accornero, William Chapple, and Tomaso Poggio, and Ms. 
Shiela Cotter for their many insightful comments on this work. 

The mathematical model presented here provides an inter- 
pretation of single- and multi-joint movements performed by 
primates. The generalization of the work presented in this 
paper to multi-joint movement has recently been presented by 
Flash and Hogan (1982). The question of the relation of this 
mathematical model to current neurophysiological models such 
as “final position control” and in particular to the body of 
myoelectric and single cell recordings is dealt with under “Dis- 
cussion” and in Bizzi et al. (1984). 

System Equations: The Virtual Trajectory 

The differential equations used to describe the system be- 
havior are based on experimental observations of intact and 
deafferented monkeys making voluntary pointing movements 
of the forearm to a visually presented target. It should be 
pointed out that these are large movements performed at inter- 
mediate speed. The behavior to be modeled has been described 
in detail elsewhere (Bizzi et al., 1981a, b, 1982a, b, 1984). For 
present purposes a key observation culled from these data is 
that perturbations applied before and after a movement dem- 
onstrated that the limb was in a stable equilibrium posture, 
even in the absence of afferent feedback. 

In the theory presented in this paper the elbow joint is 
assumed to have a constant center of rotation and the forearm 
is treated as a rigid body. The entire group of flexor and 
extensor muscles generates a single resultant torque about the 
elbow joint. Although muscle force is a complicated function of 
many variables, the dominant mechanical behavior may be 
represented by considering only its dependence on the muscle 
length and its rate of change. Accordingly, the resultant torque 
may be assumed to depend only upon the active states of the 
muscles spanning the joint and upon the angular position and 
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velocity of the joint. The resulting differential equation describ- 
ing forearm motion is: 

ze = T(0, 4, (a)) (1) 
where 0 is elbow angular position, 6 is elbow angular velocity, 
4 is elbow angular acceleration, (a) is the set of muscle active 
states, I is forearm inertia, T is resultant muscle torque, and 
parentheses denote functional dependence. 

At equilibrium the velocity and acceleration of the limb are 
both zero, and thus, the resultant torque about the elbow joint 
in the absence of external torques is also zero: 

T(4 l4) = 0 
e=o (2) 
@CO 

The observation that an equilibrium posture of the limb may 
be maintained even for a brief period (e.g., 1 set) in the absence 
of feedback (Kelso, 1977; Polit and Bizzi, 1978, 1979; Bizzi and 
Polit, 1979; Kelso and Holt, 1980; Schmidt and McGown, 1980; 
Bizzi et al., 1981a, b, 1982a, b, 1984) means that this equation 
may be solved explicitly to express the equilibrium position of 
the limb as a function of the set of muscle active states. Note 
that the duration of the period over which the equilibrium 
posture is maintained does not affect the solvability of the 
equation 

00 = 00((a)) 
where 00 is equilibrium position. 

(3) 

In other words, a change in {a) requires a corresponding 
change in 0 to maintain T = 0. Now assume that the functional 
form of the relation between joint torque and forearm motion 
(equation 1) remains the same during movement (although its 
parameters may change). As a result, the set of muscle active 
states may always be interpreted as defining a virtual equilib- 
rium position for the limb. When the muscle activity varies, a 
time-history of virtual positions is generated which is termed 
the virtual trajectory. 

Muscle activity may of course determine more than just an 
equilibrium position for the limb. For example, the net me- 
chanical impedance’ about the joint may be modulated by the 
coactivation of antagonist muscles (Hogan, 1979, 1980a, b, 
1984; Lanman 1980). The concept of a virtual position is merely 
a representation of one of the mechanical consequences of a 
given set of muscle activities. If the limb is in motion the virtual 
position defined by the set of muscle active states may differ 
from the actual position of the forearm. Indeed, it may even lie 
outside of the range of reachable positions for the limb. The 
virtual position may conveniently be thought of as that position 
toward which the instantaneous set of muscle activities is 
driving the limb at any point in time. 

It is important to note that the concept of a virtual position 
or trajectory does not require any assumptions of linearity of 
the relation between muscle force and length or velocity of 
shortening. However, in part of the work presented below, a 
numerical description of the dependence of resultant torque on 
angular position and velocity is required. In the interest of 
simplicity, in that part of the paper it will be assumed that the 
position and velocity dependencies are uncoupled and linear. 
These assumptions are made explicit as follows: 

T(0, e, {a)) = T((aJ) - KB - B s (4) 
where K is angular stiffness and B is angular viscosity. 

An expression for the virtual trajectory is found by applying 
equation 2. 

T({u)) = K 0 (5) 

W4 = WWK (6) 

‘Mechanical impedance refers to the dynamic equation relating 
resulting forces and torques to imposed motion and includes stiffness, 
viscosity, etc. 

Rewriting in terms of the virtual trajectory we obtain a 
simple second-order equation as the model of the forearm 
dynamics: 

Z i + B 6 + K 19 = K Oo({u)) (7) 
A further simplifying assumption is to equate the active state 

of the muscle to its input alpha motoneuron activity, in effect 
neglecting the dynamics of the physiological processes which 
produce the mechanical output of the muscle in response to the 
input neural activity. This assumption preserves the second- 
order form of the equations. In the following it will be shown 
that this simplified, linear, second-order model can adequately 
describe the observed behavior. 

The Criterion Function: Minimum-Jerk Motion 
Equation 7 models the output motion of the forearm in 

response to a specified alpha motoneuron input. An equally 
important part of a model of the complete system is the pro- 
cedure for selecting appropriate inputs. In the following the 
time-varying inputs to the differential equations are determined 
by using dynamic optimization techniques to minimize a cri- 
terion function. Minimization of the criterion function is a 
mathematical model of the behavioral organization of the 
movement. 

The key element in this part of the system model is the 
criterion function and, as before, the choice was based on 
experimental observations. The smoothness and gracefulness 
of the actual motions performed by intact3 primates is sugges- 
tive and the organizing principle assumed in the following 
analysis may be stated as follows: “Generate the smoothest 
motion which will bring the limb from equilibrium at the 
starting position to equilibrium at the target position in a given 
time.” 

It is assumed that maximizing the smoothness may be 
modeled by minimizing the mean-square jerk. Jerk is defined 
mathematically as the third time derivative of position, or the 
rate of change of acceleration. The criterion function to be 
minimized is thus: 

s 

d 
c= y2/2 dt (8) 0 

where C is the criterion function, t is time, al is duration of 
movement, and y denotes jerk. 

As discussed later, additional terms could be included in the 
criterion function, but they are not essential. Hence, for clarity, 
only the mean-square jerk will be considered in this paper. 

Dynamic Optimization 
Dynamic optimization refers to the use of the calculus of 

variations to minimize a functional subject to a set of constrain- 
ing dynamic equations and algebraic equalities or inequalities. 
A comprehensive introduction to the topic is to be found in 
Bryson and Ho (1975) and Pontryagin et al. (1962). In this 
paper, a trajectory is to be found which brings the value of the 
criterion function (equation 8) to a minimum subject to the 
constraints imposed by the dynamics of the system (equation 
7) and its physical limitations such as the maximum torque the 
muscles may exert or the maximum speed of the limb. The 
method of Pontryagin et al. (1962) is applied in Appendix I to 
derive necessary conditions for the existence of a minimum. 
The form of the minimum-jerk movement trajectory is a fifth- 
order polynomial in time: 

b’(t) = b, + b, t + b, t2 + 6, t3 + 64 t4 + bg t5 
where b. . . . b, are constants. 

(9) 

3 Single-joint forearm movements in deafferented monkeys show 
acceleration profiles similar to those observed in the movements of 
intact animals (Bizzi et al., 1984). They are smooth in the sense that 
the accelerative transients are kept to a minimum. This is precisely 
the meaning of “smooth” which is quantified by equation 8. 
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The details of a specific movement depend on its boundary 
conditions. A sufficient set of boundary conditions consists of 
the position, velocity, and acceleration at the start of the 
movement (time = 0) and at the finish (time = d). The 
movements to be modeled start and finish at rest; thus the 
chosen boundary conditions4 for this point-to-point movement 
are as follows: 

e(o) = ps; d(O) = 0; b(o) = 0 (10) 
W) = PA B(d) = 0; B(d) = 0 

where ps is position of start and pf is position of finish. 
Solving for the constants b0 . . . . b5 yields the following 

equation for the movement: 
O(t) = ps + a{lO(t/# - 15(t/# + S(t/d)‘) 0 5 t 5 d (11) 

where a is movement amplitude, and a = pf - ps. 
Equation 11 shows that the shape of the predicted movement 

trajectory does not change with amplitude or duration of the 
movement. Changes in movement amplitude or duration merely 
serve to change the scale of the position and time axes, respec- 
tively. The position, velocity, and acceleration profiles for a 60” 
movement lasting 700 msec are shown in Figure 1. The follow- 
ing characteristics of the movement may be derived: 

Maximum velocity = 1.33 a/d (12) 
Maximum acceleration = 5.77 a/d’ (13) 

The observations presented by Bizzi et al. (1982a, b, 1984) 
of monkeys performing undisturbed pointing movements show 
a measured mean value of peak absolute acceleration for a 60” 
movement of 1130”/sec2. The variability was such that 1 SD 
about the mean covered a range from 1450 to 810”/sec2. A 
minimum-jerk motion with the same amplitude and peak ab- 
solute acceleration has a duration of 554 msec with 654 and 
489 msec representing the corresponding range of deviations. 
The measured distribution of movement durations was skewed 
toward shorter times with a mean value of 692 msec and a 
standard deviation of 676 msec. 

It can be seen from equation 13 that if the movement duration 
remains constant, the peak absolute acceleration will scale with 
movement amplitude. A 20” minimum-jerk movement of 554 
msec duration will have a peak acceleration of 376”/sec2. Ex- 
perimental measurements of 20” movements show a mean peak 
absolute acceleration of 397”/sec2 (Bizzi et al., 1984). Within 
the limits of experimental accuracy the minimum-jerk move- 
ment profile yields good qualitative and quantitative agreement 
with observed undisturbed movement profiles. 

The experimental observations make it clear that the animal 
is not operating anywhere near the limits of neuromuscular 
performance, and this can be used to gain insight into the 
mathematical results. The chosen criterion function (equation 
8) which models the organization of the movement depends 
only on kinematic variables related to the trajectory of move- 
ment. If a movement lies within the performance envelope of 
the neuromuscular system, the problem of minimizing equation 
8 is effectively unconstrained and the classical techniques of 
variational calculus may be applied to derive the optimal move- 
ment trajectory directly (see Appendix II). 

Consequently, the result presented in equation 11 represents 
a planned movement the coordination or organization of which 
is completely independent of the physical system generating the 
motion. This is in keeping with the idea originally proposed by 
Bernstein (for a recent re-examination of Bernstein’s work see 
Whiting, 1984) and supported by recent experimental work 
(Morasso, 1981) that movements are coordinated in terms of 
the motion of the hand in extracorporeal space. Furthermore, 
because no model of the neuromuscular system is required and 
assumptions of linearity or nonlinearity are irrelevant, this 

4 Other boundary conditions are of course possible. Nelson (1983) 
used a different set to describe repetitive, reciprocating movements. 
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Figure 1. The position (A), velocity (B), and acceleration (C) profiles 

for a 60” minimum-jerk motion of 700 msec duration between two 
equilibrium positions. Note the bell-shaped velocity profile character- 
istic of voluntary movements in primates. Horizontal axes represent 
time in seconds; uertical axes represent (A) degrees, (B) degrees per 
second, and (C) degrees per second’. 

model of the organization of movement would be expected to 
have considerable generality-provided the resulting move- 
ment lies within the performance envelope of the system. An 
extension of this model to multi-joint movements has been 
presented by Flash and Hogan (1982). 
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Digital Simulation 

In contrast to the actual movement profile, the prediction of 
the virtual trajectory depends heavily on the assumed model of 
the neuromuscular system. To obtain numerical predictions, 
the linear model of equation 7 was used. As this model has been 
kept as simple as possible, only three parameter values are 
needed: the inertial, viscous, and elastic coefficients for the 
forearm. The inertia was measured directly by applying small, 
brief pulses of torque to the forearm while it was at rest and 
measuring the resulting initial acceleration. The value I = 0.014 
kilogram-meter’ was obtained. 

The elastic coefficient was estimated as follows. Experiments 
were performed in which the forearm was held at rest in its 
initial position and released at various times following the onset 
of evoked agonist myoelectric activity (Bizzi et al., 1984). The 
acceleration of the limb just at the moment of release was 
measured. The torque causing this acceleration was obtained 
by multiplying by the inertia. As the velocity of the limb was 
zero at the moment of release, any viscous torque was zero, and 
according to the model the accelerating torque was solely due 
to the elastic torque generated by the difference between the 
virtual position and the actual position. In addition, according 
to the model, at (or after) the end of a movement the virtual 
position coincides with the target position. Thus, when the limb 
was held in the start position up to (or beyond) the duration of 
a normal unperturbed movement, the angular displacement of 
target from start equalled the difference between the virtual 
and actual positions. Dividing the accelerating torque by the 
angular displacement of target from start yielded an estimate 
of the stiffness. 

The experimental results (Bizzi et al., 1984) showed that, 
when the limb was held for 700 msec (equal to or exceeding the 
duration of most normal unperturbed movements), the accel- 

50 

40 

eration at the moment of release was about 40 radian/set’. This 
requires an initial accelerating torque of 0.56 newton-meter 
and yields an estimated stiffness of 0.64 newton-meter/radian. 
Accordingly, in the linear, second-order equation describing the 
forearm dynamics an undamped natural frequency of 6.77 
radian/set (1.08 Hz) was used. 

The application of torque pulses to the limb when it was at 
rest showed that the system was underdamped (damping ratio 
between 0.1 and 1.0 approximately), but it did not prove prac- 
tical to measure the viscous coefficient directly. Instead, for a 
series of values of the damping ratio digital computations of 
the time course of the virtual trajectory were performed and 
compared with the results of the hold-and-release experiment. 

Figure 2 shows a plot of the experimental results superim- 
posed upon plots of the predicted virtual trajectory. To compare 
the theoretical prediction with the experimental observations, 
the virtual trajectory (an angular displacement) has been mul- 
tiplied by the estimated stiffness to yield a torque and divided 
by the inertia to yield an acceleration. It can be seen that the 
simple model developed above provides an adequate fit to the 
experimental data and that the match between prediction and 
experiment is not unduly sensitive to the value chosen for the 
damping ratio. 

Using a damping ratio of 0.4, digital simulations of the actual 
forearm movement were performed. A simulated unperturbed 
movement and the virtual trajectory required to generate it are 
shown in Figure 3A. Note that because of the spring-like 
behavior of the muscles the virtual position must initially 
precede the actual position of the forearm in order to generate 
the torques necessary to produce the desired movement. 

Experiments were performed in which the limb was driven 
by servo action into the target position and released from there 
at the onset of evoked myoelectric activity (Bizzi et al., 1984). 
To simulate the effect of this perturbation a computation was 

, I I I t I 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

TIME 

Figure 2. The smooth curves are the simulated virtual trajectories required to generate 
a movement lasting 700 msec when the forearm dynamics are given by equation 7 with 
an undamped natural frequency of 6.77 radian/set and damping ratios of 0.2, 0.3, 0.4 
and 0.5, respectively. The points are experimental data reported by Bizzi et al. (1984) 
on the initial acceleration of a monkey’s forearm upon release after being held for a 
period of time following the onset of voluntary muscle activity (diamonds represent 
intact animals, and circles represent deafferented animals). For comparison with the 
experimental data, the virtual trajectories have been multiplied by the stiffness and 
divided by the inertia of the forearm to yield an acceleration. The horizontal axis 
represents time in seconds; the uertical axis represents radian per second’. 



The Journal of Neuroscience Organizing Principle for a Class of Voluntary Movements 2749 

70 , I I I I 

50 

40 

0 

-10 ’ I I I I I I I 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

TIME 

70 

60 

50 

40 

30 

20 

0 

- 10 I I I I I I 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

TIME 

Figure 3. A digital simulation of the actual (solid lines) and virtual 
(dashed lines) trajectories for an undisturbed 60” motion lasting 700 
msec is shown in A. The same virtual trajectory and the actual trajec- 
tory which results when the limb is released from rest at the target 
position at time zero are shown in B. Note that, although the input to 
the system (the virtual trajectory) has remained unchanged, the limb 
first heads back toward the initial position before reversing direction 
and proceeding to the target position. Horizontal axes represent time 
in seconds; vertical axes represent degrees. 

performed using the same parameters and the same virtual 
trajectory, but with different initial conditions such that the 
forearm started from rest at the target position. Figure 3B 
showsthe result: as observed in the experimental animals, the 
limb first moved backwards toward the starting position before 
changing direction and proceeding to the target. 

Note that the model of equation 7 does not explicitly describe 
any modification of the alpha motoneuron activities due to 
sensory feedback. Any contribution of muscle spindle or tendon 
organ feedback to the apparent stiffness or viscosity of the 
forearm is included with the inherent stiffness and viscosity of 
the musculature and ligature in the model parameters K and 
B. Consequently, the model predicts that the same alpha mo- 
toneuron activity which generated the virtual trajectory and 
actual movement of Figure 4A will also generate the movement 
of Figure 4B when only the initial conditions are changed. 
Because the muscles are defining an equilibrium position (vir- 
tual position) for the limb, the initial motion of the limb is to 
move toward the instantaneous value of the virtual position, 

even though this may imply an extensor motion in the presence 
of predominant flexor activity (or vice versa). 

The important point here is that the extensor motion in the 
presence of predominant flexor activity (or vice versa) implies 
that the virtual position undergoes a gradual transition between 
start and final equilibrium positions. Most of the transition 
occupies about half of the movement duration. The simulated 
virtual trajectory reaches a local maximum at 430 msec and 
stays near the final position (less than 20% of the movement 
amplitude away from it) thereafter. 

Discussion 

The observation in both the intact and deafferented animals 
of extensor motion during predominant flexor activity (or vice 
versa) is a compelling reminder of the fact that muscle may not 
be viewed simply as a pure force generator. The concept of a 
“virtual position” defined by the relevant muscles is a concise 
and effective way of including the length dependence in a model 
of muscle. The active states of the relevant muscles may always 
be interpreted by specifying a position command (the virtual 
position). Torque is generated by the apparent elasticity of the 
musculature in response to the difference between the actual 
position and the virtual position. 

The question of what muscle variables are commanded by 
the central nervous system in limb movements has been dis- 
cussed at length in the literature (Stein, 1982). To compare and 
contrast the interpretation of neural commands underlying the 
mathematical model proposed in this paper with these alter- 
native neurophysiological theories, note that, provided the re- 
lation between torque and angle can be inverted, it would be 
equally correct to interpret the active states as specifying a 
“virtual torque” with the limb position being specified by the 
compliance (the inverse of stiffness) of the limb in response to 
the difference between actual torque and virtual torque. If the 
torque-angle relation is invertible, it is meaningless to ask 
whether the central nervous system commands position or 
torque (two of the prominent alternatives which have been 
proposed); alpha motoneuron activity may equally well be in- 
terpreted as a position command (the virtual trajectory) or as 
a torque command. In the foregoing, the command was inter- 
preted as a position for reasons of clarity as this permits direct 
comparison of the command with the actual position, and 
because it is theoretically more general-no assumption of an 
invertible torque-angle relation is required. 

The numerical simulations presented in this paper match the 
observations presented by Bizzi et al. (1981a, b, 1982a, b, 1984), 
both qualitatively and (within experimental error) quantita- 
tively. However, the model presented here is not exclusive; 
other models could be formulated to match the experimental 
data. For example, based on the experimental data shown in 
Figure 2, one might postulate a virtual trajectory which was a 
simple linear ramp from the start to the target position occu- 
pying about half of the movement duration. If this virtual 
trajectory is applied as input to the model of equation 7 using 
the parameters determined previously (undamped natural fre- 
quency of 6.77 radian/set and damping ratio of 0.4), the result- 
ing simulated motion exhibits a pronounced overshoot. The 
overshoot can be reduced by increasing the damping ratio, and 
because of the uncertainty in the value of the viscous coeffi- 
cient, this change of parameter can be justified. Figure 4 shows 
a digital simulation of the response of the model to an input 
ramp lasting 400 msec using an undamped natural frequency 
of 6.77 radian/set and a damping ratio of 0.7 as parameter 
values. As can be seen, there are some quantitative differences 
in the predictions-the simulated movement exhibits some 
overshoot and the undisturbed velocity and acceleration pro- 
files are asymmetric-but the major qualitative features of the 
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Figure 4. A digital simulation of the position (A), velocity (B), and acceleration (C) profiles which result when the virtual position (dashed 
line) is a linear ramp from start to target positions lasting 400 msec. The dynamic parameters used are an undamped natural frequency of 6.77 
radian/set and a damping ratio of 0.7. The corresponding position profile which results when the limb is released from rest at the target position 
is shown in D. Horizontal axes represent time in seconds; vertical axes represent: (A) degrees, (B) degrees per second, (C) degrees per second* 
and (D) degrees. 

movement, such as the reversal following the simulated pertur- 
bation, are produced. However, because it embodies a descrip- 
tion of the organization of the movement, the minimum-jerk 
model has superior predictive capabilities. For example, if the 
planner were to specify a faster movement, the virtual trajec- 
tory would overshoot the target position (Fig. 5). As the virtual 
position is a function of the muscle active state, the difference 
bbtween agonist and antagonist muscle activity would have a 
comparable time history, and this is not unlike the character- 
istic “pulse-step” patterns of myoelectric activity seen during 
rapid movements (Ghez and Vicario, 1978a, b; Ghez and Mar- 
tin, 1982). The mathematical description also shows that one 
alternative strategy for generating faster movements would be 
to keep the form of the virtual trajectory unchanged, but scale 
the stiffness, damping, and duration such that the undamped 
natural frequency of the limb dynamics increases inversely 
proportional to the decrease in duration while the damping 
ratio remains constant (see Fig. 5). This may be experimentally 
testable and thus the mathematic analysis presented above may 
suggest some new avenues of investigation. Finally, the math- 
ematical model presented here has considerable generality. It 
may be applied directly to other movements and more complex 
and physiologically realistic situations; the identical theoretical 

framework-minimization of mean-square jerk-has been suc- 
cessfully used to predict the detailed position and velocity 
profiles of multi-joint movements (Flash and Hogan, 1982; 
Flash, 1983). 

The model of the neuromuscular system used in this paper 
neglected the dynamics of the excitation-contraction coupling. 
It might be argued that the observed gradual transition of the 
virtual position from the start to the target is not the execution 
of a motor plan, but merely a consequence of the sluggish 
response of muscle to an abrupt change in its neural input. 
This possibility cannot be ruled out, but it is difficult to 
reconcile with the known properties of muscle. An extremely 
conservative estimate of the response time of monkey biceps 
and triceps can be made by using data obtained from human 
biceps and triceps. The twitch contraction times of these mus- 
cles were reported by Buchthal and Schmalbruch (1970) to 
have mean values of 52 and 45 msec, respectively. As the net 
muscle force is the sum of a large number of twitch contractions 
produced by the input alpha motoneuron impulses, the twitch 
contraction can be regarded as the impulse response of a linear 
model of the muscle. A linear model with three identical poles 
at 40 radian/set produces an impulse response (shown in Fig. 
6A) with a time-to-peak contraction of 50 msec. The response 
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Figure 5. Two alternative strategies for controlling faster movements 
are simulated, One strategy is to modify the input. The virtual trajec- 
tory required to produce a minimum-jerk movement lasting 350 msec 
when the limb dynamic parameters are unchanged (undamped natural 
frequency 6.77 radian/set, damping ratio 0.4) is shown in A. Note the 
initial overshoot or “pulse” in the virtual trajectory which is followed 
by a sustained “step.” Another strategy is to modify the system dynamic 
parameters, leaving the shape of the virtual trajectory unchanged and 
simply scaling it with time. To produce a minimum-jerk movement 
lasting 350 msec requires twice the undamped natural frequency (13.54 
radian/set) and the same damping ratio; i.e., a stiffness of 2.24 newton- 
meters/radian and a viscosity of 0.142 newton-meter-second/radian. 
The corresponding virtual and actual trajectories are shown in B. Solid 
lines are simulated actual trajectories; dashed lines are virtual trajec- 
tories. florizontal axes represent time in seconds; vertical axes represent 
degrees. 

of this model of the excitation-contraction dynamics to a step 
change in neural input produces a “virtual trajectory” which 
rises to within a few percent of its final value within 200 msec- 
considerably faster than the experimental data of Figure 2 
indicate (see Fig. 6B). 

Unfortunately, this simulation depends upon the order of the 
linear model assumed for the muscle contraction dynamics. A 
detailed in uiuo experimental and theoretical study of the 
dynamics of human biceps and triceps was reported by Zahalak 
and Heyman (1979). They showed that a two-pole model with 
equal time constants of 50 msec gave a good representation of 
their experimental data. The shape of the impulse response of 
this two-pole linear model of muscle contraction dynamics 

differs substantially from the shape of a typical twitch contrac- 
tion-it exhibits a discontinuity in its initial rate of change 
(see Fig. 6C)-but for comparison purposes, this model was 
used to generate a virtual trajectory. The result is shown in 
Figure 6D: again the simulated virtual trajectory rises more 
rapidly than the experimental data of Figure 2, but the devia- 
tion from the experimental measurements is reduced. If the 
average time-to-peak twitch contraction of the motor units in 
monkey arm muscles were longer than 50 msec, this would 
further erode the difference between the simulations and the 
experimental data. Bearing in mind that the muscles of a 
monkey probably respond more rapidly than those of a human, 
the simulation results of Figures 6 show that it would be 
difficult to attribute the experimental observations to the con- 
traction dynamics alone; but, without a reliable model of mus- 
cle, no definitive statement can be made. Given these consid- 
erations, it is clear that any comparison of this model with the 
data from single-cell recordings is premature at this stage. 

Dynamic optimization is an essential part of the mathemat- 
ical modeling presented in this paper. It permits global aspects 
of the movement to be factored into the analysis through the 
criterion function. It brings about a dramatic reduction in the 
dimensionality of the problem of choosing inputs for the differ- 
ential equations. Of the infinite set of possible commands which 
would bring the system from start to target in the given time, 
only one minimizes the criterion function (provided the prob- 
lem is non-singular). It provides a numerically testable model 
of the planning and organization of a voluntary movement 
which is complementary to the model of the dynamics of the 
neuromuscular system. 

The heart of the dynamic optimization is the criterion func- 
tion. It is a model of the organizational objective of the move- 
ment. Like all models, it is of necessity incomplete and could 
be refined and improved. The criterion function used in this 
analysis, that of minimizing the integral of the square of the 
jerk throughout the duration of the movement, was chosen as 
the simplest criterion function which would yield the observed 
motion profile. Other criterion functions have been investi- 
gated. Minimizing the mean-square snap (the fourth time de- 
rivative of position) has been shown to produce adequate pre- 
dictions of experimentally observed movements, whereas min- 
imizing mean-square acceleration does not (Flash, 1983). At 
the cost of increasing the complexity of the criterion function 
(and hence the analysis), the agreement between the model 
predictions and the experimental observations may be im- 
proved. The predicted motion profile has symmetrical acceler- 
ation and deceleration phases. However, it has been observed 
(Lanman, 1980; Morasso, 1981; Abend et al., 1982) that the 
acceleration phase of a point-to-point movement is occasionally 
somewhat shorter than the deceleration phase. This could 
readily be accommodated if the criterion function were aug- 
mented to include an additional term penalizing the square of 
the deviation of the actual position from the target position. 
This term would cause the controller to use higher levels of 
jerk and acceleration in the early portion of the movement so 
as to bring the error between actual and target positions down 
to a low value and use lower accelerations and jerks in the 
latter portion of the movement to offset this. The result is an 
asymmetric motion profile. However, an additional term in the 
criterion function would compromise the clarity and simplicity 
of the analysis, and as the observed asymmetry is typically 
small, including it was deferred for further research. 

It is tempting to adduce physical or physiological reasons for 
minimizing jerk during a motion. For example, one might 
speculate that this strategy evolved to minimize “wear and 
tear” on the neuromuscular system. However, this is difficult 
to reconcile with the fact that the movements under consider- 
ation are at moderate speed and do not subject the animal to 
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Figure 6. The twitch response of a three-pole linear model of the excitation-contraction dynamics of muscle is shown in A. The twitch response 
is simulated by applying an impulse input to the model. The three poles of the model are at 40 radian/set resulting in a time-to-peak contraction 
of 50 msec. The virtual trajectory generated by this model in response to a step change in its input is shown in B, scaled as in Figure 2 for 
comparison with the experimental data of Figure 2. The twitch response of a two-pole linear model of the excitation-contraction dynamics of 
muscle is shown in C. The two poles of the model are at 20 radian set resulting in a simulated twitch response time-to-peak contraction of 50 
msec. The virtual trajectory generated by this model in response to a step change in its input is shown in D, scaled as in Figure 2 for comparison 
with the experimental data of Figure 2. Horizontal a3ces represent time in seconds; vertical axes represent: (A) and (C), l/set; (B) and (D), 
radian/second’. 

undue stress. Instead, it seems that minimizing jerk may sim- 
plify the control of the system. Reducing the magnitude of the 
higher derivatives of the motion implies a reduction in the 
amount of information required to specify, store, or predict the 
trajectory. 

Whatever its physiological underpinnings, the real strength 
of the minimum-jerk criterion function, or indeed any other 
criterion function, is its use as an organizing principle. The use 
of variational principles is common in physics and engineering. 
They are not presented as the cause of the behavior they 
describe but rather as a distillation of its essence. The mini- 
mization of jerk provides a concise description of a wide variety 
of movements. Motion profiles similar to those derived in this 
paper can be seen in the data for point-to-point movements 
ranging from saccadic eye movements to movements of the 
entire upper arm (Clark and Stark, 1975; Viviani and Terzuolo, 
1980; Morasso, 1981). Nelson (1983) has shown that an accurate 
prediction of repetitive arm movements during violin bowing 
and jaw movements during speech may be obtained from a 
minimum-jerk formulation by changing the boundary condi- 

tions so that acceleration is non-zero at the beginning and end 
of the movement. The minimum-jerk criterion function is also 
capable of predicting the major features of more complex vol- 
untary behavior such as the trajectory of the hand in a planar 
motion around a visually presented obstacle (Abend et al., 1982; 
Flash and Hogan, 1982; Flash, 1983). Consequently, the math- 
ematical analysis presented in this paper may be a first step 
toward a unified and general description of the organization of 
voluntary movements. 

Appendix I 

The objective function 

s 
d c= y2/2 dt 

0 (Al) 

is to be minimized subject to the constraints imposed by the 
physical system. The simplified linear system dynamics of 
equation 7 are assumed. The system equations are expressed 
in state-space form, augmented to permit explicit expression of 



The Journal of Neuroscience Organizing Principle for a Class of Voluntary Movements 2753 

jerk as a function of state and input variables (U) assumes an extremum when 0 (t) is given by the Euler-Poisson 
b=w (A2) equation: 

K K B &c-&---~---w 
I I I (A3) 

aF - - f $ + . . . + (-1)” $ -g = 0 
do 

VW 

(A4) In this problem: 
F{t, 8, 4, . . . 0’“‘) = y2/2 

(A5) Applying equation A16: 
(A17) 

Note that the vector of alpha motoneuron control inputs has 
been represented by the reference position, OO. 
Form the Hamiltonian: . d6*=0 

’ ’ dt’ (A191 
(A6) 

The resulting position trajectory is given by a fifth-order poly- 
The Hamiltonian is to be minimized with respect to the 

control, U. If any of the assumed inequality constraints on the 
state or input variables become active, the active constraints 
must be included in the Hamiltonian (Bryson and Ho, 1975). 
However, if none of the inequality constraints are active, equa- 
tion A6 may be brought to the extremum by partial differentia- 
tion with respect to U. 

dH -CO 
au 

u=;oo-;o+ l-~Iu-~Ix, 
[ I 

(A7) 

This is a necessary condition, valid if none of the variables 
reaches its limits. 

The variables Xi, XZ, and XS are found from co-state equations: 
aH - = -A1 = -7 x2 - !f x3 
do 

(A91 

aH=-i =!!x +B_x 
trajectory formation in monkeys. Exp. Brain Res. 46: 139-143. 

ae, 3 I 2 I 3 
(All) Bizzi, E., N. Accornero, W. Chapple, and N. Hogan (1984) Posture 

control and trajectory formation during arm movement. J. Neurosci. 
Combining equations A2 through A4 with equations A8 through 4: 2738-2744. 

Bryson, A. E., Jr., and Y. C. Ho (1975) Applied Optimal Control, John All yieldsthe following linear-differential equations: 
Wiley & Sons, Inc., New York. 

nomial: 
O(t) = b,, + bi + b# + b& + b& + bst5 
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