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ABSTRACT

Manipulation fundamentally requires a
manipulator to be mechanically coupled to the
object being manipulated. A consideration of the
physical constraints imposed by dynamic interaction
shows that control of a vector quantity such as
position or force is inadequate and that control of
the manipulator impedance is also necessary.
Techniques for control of manipulator behaviour are
presented which result in a unified approach to
kinematically constrained motion, dynamic
interaction, target acquisition and obstacle
avoidance.

INTRODUCTION

The work presented here is an attempt to
define a unified approach to the control of
mechanical manipulators. This approach encompasses
and includes the simple positioning or transporting
tasks typically performed by robots and/or
prostheses. It also builds on this capability,
extending it to facilitate the application of
robots and/or prostheses to tasks involving static
and dynamic interactions between the manipulator
and its environment. It will be shown that thb
approach can lead to a simplification of
manipulator control .

By any reasonable definition, manipulation
fundamentally requires mechanical interaction with
the object(s) being manipulated, and a useful
classification of manipulatory tasks is by the-
magnitude of the mechanical work exchanged between
the manipulator and its environment. In some cases
the interaction forces are negligible, the
instantaneous mechanical work done by the
manipulator is negligible, (dW = F.dX = 0) and for
control purposes the manipulator may be treated as
an isolated system, with its output position or
velocity as the controlled variable(s). Generally,
the successful applications of industrial robots to
date have been restricted to this case; examples
are spray-painting and welding [28] .

In other cases the manipulator encounters
constraints in its environment and the interaction
forces are not negligible; however, although the
manipulator is kinematically coupled to its
environment, dynamic interaction is still absent.
Along the tangent to a pure kinematic constraint
the interaction forces are zero (F = 0) whereas
along the normal into the surface the motions are
zero (dX = 0) and in all directions the
instantaneous mechanical work done is again
negligible (dW = F.dX = 0). In this case an
appropriate control strategy is a combination of
motion control along the tangent and force control
along- the normal. This control strategy is
commonly terqied "compliance" [191, more correctly
called "accomodation" [33], and is the topic of a
considerable body of laboratory research, although
it has not yet seen widespread industrial
appl icati on.

The most general case (which includes the
previous two as special instances) is that in which
the dynamic interaction is neither zero nor
negligible (dW / 0). A large class of
manufacturing operations fall into this category:
examples include drilling, reaming, routing,
counterboring, grinding, bending, chipping,
fettling -- any task requiring work to be done on
the environment. Many activities of daily living
to be performed by an amputee using a prosthesis --
basically any task involving the use of-a tool --
are also in this category. If the dynamic
interaction is to be modulated, regulated or
controlled, then strategies directed towards the
control of a vector quantity such as position,
velocity or force-will be inadequate as they are
insufficient to control the mechanical work
exchanged between the manipulator and its
envirorment.

A solution to this problem is to modulate and
control the dynamic behaviour of the manipulator in
addition to commanding its position or velocity.
If-the environment is-regarded as a source of
"disturbances" to the manipulator, then modulating
the "disturbance response" of the manipulator will
permit control of dynami-c- interactions £21]. One
way to vary the dynamic behaviour of a manipulator
would be to vary the parameters and/or structure of
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a feedback controller L25], but this is not the
only way, nor always the best way. Exploiting the
intrinsic properties of mechanical hardware can
also provide a simple, effective and reliable way
of dealing with mechanical interaction [7,8,20,34].

A unified framework for considering the action
of both hardware and software in the control of
dynamic behaviour can be obtained by making the
reasonable postulate that no controller can make
the manipulator appear to the environment as
anything other than a physical system. Along each
degree of freedom, instantaneous power flow between
a physical system and its environment is always
defined by the product of two conjugate variables,
an effort (e.g. a force, a voltage) and a flow
(e.g. a velocity, a current) [24]. Seen from the
environment, physical systems come in only two
types: admittances, which accept effort (e.g
force) inputs and yield flow (e.g. motion)
outputs, and impedances, which accept flow (e.g.
motion) inputs and yield effort (e.g. force)
outputs. The concepts of impedance and admittance
are familiar to designers of electrical systems and
are frequently regarded as equivalent and
interchangable representations of the same system.
For a linear sytem this usually is true, but for a
nonlinear system it usually is not: The
distinction between admittance and impedance is
fundamental.

An important consequence of dynamic
interaction between two physical systems such as a
manipulator and its environment is that one must
physically complement the other: Along any degree
of freedom, if one is an impedance, the other must
be an admittance and vice versa. Now, for almost
all manipulatory tasks the environment at least
contains inertias and kinematic constraints,
physical systems which accept force inputs and
which determine their motion in response. However,
while a constrained inertial object can always be
pushed upon, it doesn't always move; in those
cases the describing equations cannot be written in
impedance form (motion in, force out). In
contrast, they can always be written in admittance
form (force in, motion out). When a manipulator is
mechanically coupled to such an environment, to
ensure physical compatibility with the
environmental admittance, something has to give,
and the manipulator should assume the behaviour of
an impedance.

Thus a very general strategy for controlling a
manipulator is to control its motion (as in
conventional robot control) and in addition give it
a "disturbance response" for deviations from that
motion which has the form of an impedance. The
dynamic interaction between manipulator and
environment and environment may then be modulated,
regulated and controlled by changing that
impedance, and hence the approach described in this
paper has been termed "impedance control" [12,13].

IMPLEMENTATION OF IMPEDANCE CONTROL

A distinction between impedance control and
the more conventional approaches to manipulator

control is that the controller attempts to
implement a dynamic relation between manipulator
variables such as end-point position and force
rather than just control these variables alone.
This change in perspective results in a
simplification of several control problems.

Most of our work to date [1-3,5,9-14] has
focused on controlling the impedance of a
manipulator as seen at i'ts "port of interaction"
with the environment, its end effector. Following
the lead from the prior work on path control,
[18,22,29,31,32] we have investigated ways of
presenting the environment with a dynamic behaviour
which is simple when expressed in workspace (e.g.
Cartesian) coordinates. The lowest-order term in
any impedance is the static relation between output
force and input displacement, a stiffness. If, in
common with most current work on robot control, we
assume actuators capable of generating commanded
forces (or torques), I, sensors capable of
observing actuator position (or angle), i, and a
kinematic relation between actuator position and
end-point position, L = L(9), it is straightforward
to design a feedback control law to implement in
actuator coordinates a desired relation between
end-point force, L, and position, X. Defining the
desired equilibrium position for the end-point in
the absence of environmental forces as Xo, a
general form for the desired force-position
relation is:

(1)F = K(Xo - X)

Compute the Jacobian, 3(e):

dX = J() d& (2)

From the principal of virtual work:
t

T a J (a) F (3)

The required relation in actuator coordinates is:
t

T = J (9) K(Xo - L(8)) (4)

No restriction of linearity has been placed on the
relation K(Xo - X). Note that if K(Xo - X) is
chosen so as to make the end-point stiff, then this
relation will accomplish Cartesian end-point
position control and the "inverse kinematics
problem" [23] has been completely eliminated. Only
the forward kinematic equations for the manipulator
need be computed. This may be important for those
manipulators for which no closed-form solution to
the inverse kinematic problem exists. Note also
that in this relation the inverse Jacobian is not
required.

The next important term in the manipulator
impedance is the relation between force and
velocity. Again, given the above assumptions, it
is straightforward to define a feedback law to
implement in actuator coordinates a desired
relation between end-point force and end-point
velocity such as:

F = B(v) (5)
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From the manipulator kinematics:

v = J(8) w (6)

The required relation in actuator coordinates is:
t

T * J (9) B(J(§) w) (7)

Again note that inversion of the Jacobian is not
requi red.

The dynamic behaviour to- be imposed on the
manipulator should be as simple as possible, but no
simpler. The foregoing control laws for velocity-
and position-dependent behaviour take no account of
the inertial, frictional or gravitational dynamics
of the manipulator. Under some circumstances this
is reasonable, but in many situations these effects
cannot be neglected. One approach we have taken to
dealing with inertial manipulator behaviour is to
"mask" the true dynamics of the manipulator and
impose simpler dynamics. No physically realisable
strategy can eliminate the inertial effects of a
manipulator but the apparent inertia seen at the
end effector can be modified, and elsewhere we have
presented a derivation of a feedback control law
which makes the end-point inertia appear to be that
of rigid body with an inertia tensor which is
invariant under translation and rotation [5,12-14).

IMPEDANCE CONTROL WITHOUT FEEDBACK

However, feedback control is not the only way
to modulate the dynamic behaviour of a manipulator.
One alternative we have explored is to use
kinematic redundancies to provide a measure of
control over the inertial component of the
end-point dynamics. Remember that inertial
behaviour is properly described as an admittance
and the fundamental form of the constitutive
equation for a generalised inertial system is a
relation determining generalised velocity, w, (e.g
the velocities of the manipulator joints) as a
function of generalised momentum, h:

w = Y(9) h (8)

Y(Q) is the inverse of the more coumonly used
inertia tensor, and is termed the mobility tensor.
The elements of the mobility tensor in general will
depend on the manipulator configuration. At any
given configuration, the general ised momenta in
joint coordinates and actuator coordinates are
related by the Jacobian:

t
h =J (§ B (9)

The mobility tensor in end-point coordinates W(§)
is related to the mobility in joint coordinates
Y(§) as follows:

t
W(e) = J(Q) Y(§) J (Q) (10)

The physical meaning of the end-point mobility
tensor is that if the system is at rest (zero
velocity) then a force vector applied to the
end-point causes an acceleration vector (not

necessarily co-linear with the applied force) which
is obtained by premultiplying the force vector by
the mobility tensor (see appendix).

Note that the Jacobian in the above equation
need not be square, and that the end-point mobility
is configuration dependent. As a result, redundant
degrees of freedom can be used to modulate the
end-poaint mobility. This effect can be represented
by the ellipsoid corresponding to the mobility
tensor. The locus of deviations of the generalised
momentum from zero for which the kinetic energy is
constant is an ellipsoid, the "ellipsoid of
gyration" [30]. As shown in the appendix, the
eigenvalues and eigenvectors of the symmetric
tensor W(Q) define the size, shape and orientation
of the ellipsoid of gyration in end-point
coordinates (see figure la).

To illustrate the modulation of the end-point
mobility using linkage redundancy, consider a
planar three-link mecahnism. Assuming the links
are rods of uniform density with lengths in the
ratio of 1 : 2 : 3 , figures lb through ld show
the effect on the ellipsoid of gyration of changes
in linkage configuration for a fixed position of
the end point.

An alternative representation of inertial
behaviour is via the ellipsoid of inertia [30].
Asada [4) has suggested its use as a tool for
designing robot mechanisms. However, the ellipsoid
of gyration is the more fundamental representation;
it is readily obtained even when the Jacobian of
the linkage is non-invertible. Also, while the
matrix Y(Q) may never have zero eigenvalues,
(assuming real links with non-zero mass) the matrix
W(g) may, because of the kinematics of the linkage.
Thus the end-point inertia tensor, N(f), the
inverse of the mobility tensor, does not exist for
some linkage configurations; If the inertial
behaviour of the tip is expressed in the
conventional (impedance) form as M(S) there exist
locations in the workspace for which the
eigenvalues of the tensor M(S) become infinite. On
the other hand the worst the eigenvalues of W(Q)
will do is go to zero, which is easier to deal with
computationally. Again, a reminder of the fact
that the difference between impedance and
admittance is fundamental.

SUPERPOSITION OF IMPEDANCES

One useful consequence of the assumptions
underlying impedance control is that if the dynamic
behaviour of the manipulator is dissected into a
set of components, these may be reassembled by
simple addition even when any or all of the
copmnents is nonl[fnear. This is a direct
consequence of the assumption that the environment
is an admittance, containing at least an inertia.
That admittance acts to sum both forces applied to
it and impedances coupled to it.

When the manipulator is decoupled from its
environment the terms in the dynamic equations due
to the environmental admittance disappear and in
principle the manipulator alone need exhibit no
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inertial behaviour. In practice the uncoupled
manipulator still has inertia (albeit nonlinear and
configuration-dependent). Because of the
inevitable inertial dynamics of the isolated
manipulator the superposition of impedances holds
even when the manipulator is uncoupled from its
envirorwment as there is always an inertial load to
sum forces and impedances.

This simple observation has many important
consequences. One which is imwnediately useful is
that different controller actions aimed at
satisfying different task requirements may readily
be superimposed. For example, suppose that a
desired end-point position- and velocity-dependent
behaviour is to be implemented on a manipulator
using a feedback control strategy as outlined above
in equations (4) and (7). At the same time
kinematic redundancies in the manipulator are to be
used to modulate the end-point mobility. At any
given end-point position, X, (which is always
determinable from the configuration, .) the
manipulator configuration may be chosen to best
approximate a desired inertial behavour (for
example, the mobility normal to a kinematic
constraint surface may be maximised). This
configuration may then be used in the feedback law
which implements the position- and
velocity-dependent behaviour. As the equations
never require inversion of the Jacobian, they can
be applied to a manipulator with kinematic
redundancies. Note that this approach to end point
control in the presence of kinematic redundancies
is significantly different from the use of a
general ised pseudoinverse [32).

OBSTACLE AVOIDANCE

The additive property of impedances permits
complicated tasks to be dealt with one piece at a
time and all of the pieces combined by simple
addition. We have taken advantage of this to
implement a real-time feedback control law which
drives the manipulator end-point to a target
location while simultaneously preventing unwanted
collision with unpredictably moving objects in the
manipulator's workspace [2,3].

Obstacle avoidance is generally regarded as a
problem in position control, specifically that of
planning a collision-free path [17]. The approach
we have taken is not to plan a path, but to specify
an impedance which produces the desired behaviour
without explicit path planning. In the following
example, recall that although the need for the
manipulator to have the behaviour of an impedance
arose from considerations of the mechanical
interaction between a manipulator and its
environment, cases in which the mechanical work
exchanged is negligible (e.g. free motions) may be
treated as special (or degenerate) instances.

The primary difference between impedance
control and the more conventional approaches is
that the controller attempts to implement a dynamic
relation between manipulator variables such as
end-point position and force rather than just
control these variables alone. That entire

relation becomes the command to the manipulator
which may be updated as often as practical
considerations (such as speed of computation)
dictate. In this sense, impedance control is an
augmentation of conventional position control
Each command to the manipulator specifies a
position and in addition specifies a relation
determining the accelerating force to be applied to
the total mechanical admittance in response to
deviations of the actual position from the
commanded position.

If the position- and velocity-dependent terms
in the conmnanded impedance are each assumed to to
satisfy the requirements for the existence of a
potential function (the vector force fields which
they define have no curl) then the manipulator
behaviour is simplified. It may be thought of as
analogous to that of a sticky marble rolling on a
continuously deformable surface. Varying the
impedance varies the shape of the surface and the
stickiness of the marble. Target acquisition and
obstacle avoidance may now be dealt with separately
as follows.

Successive target locations may be specified
by means of a (time-varying) depression in the
surface. Each single command has a
position-dependent component which specifies a
potential function which is a "valley" with its
botton at the target. This "valley" is depicted by
a map of isopotential contours in Figure 2a.

Conversely, given an observation of the
relative location (with respect to the end-point)
of an obstacle (or any other region in the
workspace to be avoided) that object may be avoided
by specifying a (time-varying) bump in the
deformable surface. Now each single command also
contains a position-dependent component which
specifies a potential field with an unstable
equilibrium point at the location of the object to
be avoided. The potential function is a "hill
centered over the obstacle (See Figure 2b)

The target-acquisition conmnand and the
obstacle-avoidance command could be combined in a
number of ways, but remember that the admittance
sums the impedances. The inevitable inertial
behaviour of the end-point guarantees the
superposition of the components of the
impedance-controller action independent of the
linearity of the components. It is always possible
to command obstacle-avoidance and
target-acquisition (or any other aspect of the
complete task) independently and then combine all
commands by simply adding the impedances, in this
case the corresponding potential fields (see Figure
2c) [10,11). It is important to note that this
combined potential field represents a single
command to the manipulator. Of course, neither
argets nor obstacles need stay fixed in the

workspace and a typical task will require multiple
impedance commands (just as locating the spot welds
on an automobile requires multiple position
commands to a conventional robot controller) and by
updating the impedance commands repeatedly this
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approach may be used to make a manipulator avoid
"invaders", objects which may move about the
workspace in an unpredictable (or merely
unpredicted) manner.

The use of potential functions as commands to
a robot is similar to the approach used by Khatib
[16] to navigate a manipulator through a
complicated environment. The distinguishing
feature (and advantage) of impedance control is
that the same controller used to deal with free
motions can also be used to deal with real
mechanical interaction. The success of impedance
control as a unifying framework for dealing with
both kinematically constrained manipulations and
free motions (including avoiding moving "invaders")
has been demonstrated by performing both of these
tasks in real time using a spherical coordinate
manipulator [1,2,33. The same controll-er was used
for both tasks and the algorithm was simple enough
to be implemented using 8-bit 2 MHz microprocessors
(Z-80, one for each axis) for the real-time
controller. One example of the obstacle-avoidance
behaviour achieved is shown in figure 3.

As an aside, note that to be of practical
value, the "repulsive" force fields used to
implement collision avoidance must be nonlinear;
the repulsive force must drop to zero for
sufficiently large separations between the
end-effector and objects in the environment (see
figure 2b). This is precisely the type of
non-invertible, nonl inear force/displacement
behaviour for which no inverse compliance form
exists. The concept of tuning the end-point
stiffness and damping of a manipulator has been
discussed in the literature under the general
heading of "compliance"', "compliant motion
control", "fine motion control", or "force control"
[15,19,23,25,26,33]. In most of this prior work,
the manipulator has been given the behaviour of a
compliance, (or more correctly, an admittance).
The control strategy presented here is considerably
more general; If the end-point dynamic behaviour
is expressed as an impedance, the above
obstacle-avoidance behaviour is included as a
special case; If it were expressed as a compliance-
this useful behaviour would be excluded. In
addition, the superposition property of impedances,
coupled to an admittance would not be preserved.

SUWMARY AND CONCLUSION

This paper has presented a unified approach to
manipulation termed "impedance control". Because
by its nature manipulation requires mechanical
interaction between sytems, the focus of the
approach is on the characterisation and control of
interaction. By assuming that no control system
may make a phys-ical system behave like anything
other than a physical system- several simple but
fundamental observations may be made: Command and
control of a vector such as -position or force is
not enough to control dynamic interaction between
systems; the controller must also command and
control a relation between- port variables; in the
most comnon case in which the environment is an

admittance (e.g. a mass, possibly kinematically
constrained) that relation should be an impedance,
a function, possibly nonlinear, dynamic, or even
discontinuous, specifying the force produced in
response to a motion imposed by the environment.
Even more important, if the environment is an
admittance, the total impedance is expressible as a
sum of component impedances, even when the
components are nonlinear.

An alternative approach to manipulator control
in the presence of significan-t dynamic interaction
is to change the structure and/or parameters of a
feedback controller as the conditions imposed by
the environment change. This would require the
controller to monitor the environment continuously,
identify changes, and adapt its own behaviour
accordingly -- a far-from-trivial task. Changes in
the structure and parameters of the environment may
take place very rapidly (consider the transition
from free motion to constrained motion as an object
comes in contact with a surface) and there may not
be sufficient time for the lengthy process of
system identification. On the other hand, if the
controller is structured so that the manipulator
always impresses a force on the environment in
relation to its motion (that is, it behaves as an
impedance) there are no -practical situations in
which its behaviour is inappropriate, no practical
task has been excluded, and the need to identify
the structure of the environment has been reduced.

Of course, impedance control does not preclude
the application of adaptive strategies, and indeed
the two approaches may complement each other,
controlled impedance taking care of the transitions
and allowing time for identification and adaptation
to optimise performance. Strictly speaking,
impedance control as outlined above is a subset of
parameter-adaptive control; the primary
distinctions are that the parameters to be
modulated are expressed in terms of a physically
meaningful quantity, mechanical impedance, and no
assumption is made that the implementation of the
impedance will be through feedback control
strategies. An -impedance may be implemented in a
number of ways, using to advantage the resources of
a specific manipulator. Simple feedback control
laws for i-mposing position- and velocity-dependent
components of cartesian end-point impedance were
presented above. Because care was taken to express
the desired behaviour as an impedance, compatible
with the fundamental mechanics of manipulation,
solving the inverse -kinematics problem proves to be
unnecessary. It was also shown that a possible
alternative to feedback control strategies is to
use the intrinsic mechanics of the manipulator such
as "redundantu degrees of freedom to modulate its
dynamic behaviour.

An advantage of impedance control is that it
permits a unified treatment of many aspects of
manipulator control. Real mechanical interaction
may be treated in the same framework as free
(unconstrained) motions. Impedance control has
been used to develop a feedback control law for
avoiding unpredictably moving objects. By taking
advantage of the superposition of impedances,
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target acquisition and obstacle avoidance could be
considered separately and implemented as different
components of a total commanded impedance which
were combined by simple addition. This approach
does not require explicit path planning and the
control law was simple enough to be implemented
using 8-bit microprocessors. Furthermore, the same
controller was capable of coping with kinematically
constrained motions.

However, the applicability of impedance
control extends beyond the workless conditions
imposed by free motions or pure kinematic
constraints to include the control of energetic
interactions. It promises to be particularly
useful for understanding, controlling and
coordinating the actions of mutually interacting
manipulators, such as the fingers of a hand, the
hand and the arm, or two arms. Using this approach
each subsystem presents a simple behavior to the
other subsystems. As a result, prediction and
control of the combined behavior of the entire
system is simplified. The ultimate goal of this
effort is to understand the subtleties of adaptive
tool-using, one of the distinguishing features of
primate behaviour. Impedance control may provide
the basis of an understanding of tool-using
behaviour and permit its practical implementation
on an amputee's artificial limb or on an industrial
robot.
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APPENDIX

Generalised Inertial Systems and the M4obility
Tensor

Any mechanical linkage is a generalised inertial
system. The defining property of an inertial
system is its ability to store kinetic energy,
defined as the integral of (generalised) velocity
with respect to (generalised) momentum [6]. At any
configuration defined by the generalised
coordinates the kinetic energy is a quadratic form
in (generalised) momentum.

t
Ek = 1/2 h Y(9) h

From Hamilton's equations [27), the (generalised)
velocity is the momentum gradient of the kinetic
energy.

H(h,8) = Ek(h,6)

dG/dt = w = V H = Y(8) h
h

Kinetic energy is commonly confused with kinetic
co-energy. The two are not identical and are
related by a Legendre transform [6].
* t t -1 t -1 -1

Ek = w h - Ek = w Y w - 1/2 w Y Y Y w

* t -1 t
Ek = 1/2 w Y (9) w = 1/2 w 1(8) w

At any configuration kinetic co-energy is a
quadratic form in (generalised) velocity and its
velocity gradient is the (generalised) momentum
[6].

h = 1(g) w

For a generalised inertial system, Y is a
symmetric, twice-contravariant tensor. To
distinguish it from its inverse, the inertia tensor
I, (symetric, twice-covariant) Y will be termed
the mobility tensor [12]. A knowledge of the
geometric relation between coordinate frames is
sufficient to transform any tensor from one frame
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to another. As the joint angles are a set ot
generalised coordinates, for any configuration of
the linkage of figure 1 the end-point coordinates
are related to the joint angles via the kinematic
transformations.

X = L(8)

Differentiating these transformations yields the
relation between velocities (at any given
configuration).

dX/dt = v = 3(9) w

J(6) in these equations is the
configuration-dependent Jacobian. As the
coordinate transformation does not store, dissipate
or generate energy, incremental changes in energy
are the same in all coordinate frames. This yields
the relation between forces in each coordinate
frame.

t t t
dEp Td = F dX = F J() dB

At any given configuration

t
T J (9) F

The same approach yields the relation between the
momenta in each coordinate frame.

t t t
dEk = dh w = dp v = dp J(O) w

At any given configuration

t
h = 3 ) p

These relations may be used to express the mobility
in end-point coordinates.

t
v = w =J Y h JY J p

Denoting the end-point mobility by W(Q)

t
W(Q) = 3Y 3

v = W(9) p

The physical meaning of the mobility tensor is that
if the system is at rest an applied force will
produce an acceleration equal to the force vector
premultiplied by the mobility tensor. At rest,
dQ/dt = 0 and hence:

dv/dt = J dw/dt

dw/dt = Y dh/dt

From the generalised Hamiltonian [27):

dh/dt = T - V H
2

At rest, h = 0 hence H(h,9) = Ek = 0
and V H = 0. Thus:

dh/dt * T
t

dv/dt = J Y J F = W F

As the mobility tensor is symnmetric it may be
diagonalised by rotating the coordinate axes to
coincide with its eigenvectors. A force applied in
the direction of an eigenvector (when the system is
at rest) results in an acceleration in the same
direction equal to the applied force multiplied by
the corresponding eigenvalue. The eigenvalues
represent the inverse of the apparent mass or
inertia seen by the applied force or torque.

Because the kinetic energy is a quadratic form in
momentum, it may be represented graphically by an
ellipsoid (see figure 1), the ellipsoid of gyration
[30). This may be thought of as the set of all
momenta which produce the same kinetic energy (an
isokinetic contour in momentum space). The lengths
of the principle axes of the ellipsoid of gyration
are inversely proportional to the square roots of
the eigenvalues, proportional to the square roots
of the associated apparent mass or inertia. The
long direction of the ellipsoid of figure 1 is the
direction of the greatest apparent inertia.

In the general case when the system is not at rest
the relation between applied force and resulting
motion is (in general) nonlinear and must be
written in terms of a complete set of state
equations for the inertial system. A convenient
set of state variables are the Hamiltonian states,
general ised position (e.g. Q) and generalised
momentum (h). The state and output equations are
in the form of a generalised admittance [12) as
follows.

State equations:
t t

dh/dt = -v [1/2 h Y(9) h] + J (6) F

t
dg/dt = V [1/2 h Y(G) hi = Y(8) h

b
Output equations (position and velocity):

X = L(i)

v = J(9)Y(9) h
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Figure 1: A schematic representation of the influence of kinematic redundancies on the
mobility (inverse effective mass) of the end-point of a planar linkage. The ellipsoid of gyration
associated with the mobility tensor is shown in (a). The eigenvalues of the mobility tensor are
inversely proportional to the effective mass in the direction of the corresponding eigenvectors and
the square root of their ratio determines the ratio of the major and minor axes of the ellipsoid,
which are co-linear with the eigenvectors. For a planar, three-member linkage with links of uniform
density and cross section and lengths in the ratio 1 : 2: 3 the effect on the ellipsoid of
gyration of changing the linkage configuration for a fixed position of the end-point is shown in
(b),(c) and (d).
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Figure 2: Graphical representation of the use of impedance control for real-time collision
avoidance. Each figure represents a position-dependent component of a single impedance counand (one
of a time-sequence). An isopotential contour map of the component used for target acquisition
independent of obstacles is shown in (a). The component used for obstacle avoidance independent of
target is shown in (b). Because of the additive property of impedances, simultaneous target
acquisition and obstacle avoidance may be achieved by simply superimposing these two components as
in (c).
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Figure 3: Avoidance of an unpredictably moving "invader" by an a spherical-coordinate
manipulator controlled by 8-bit, 2MHz microprocessors. Successive positions of the manipulator
end-effector and the invader in the vertical plane at 100 millisecond intervals are shown. All of
the behaviour shown here is the robot's response to a single impedance comnand from the supervising
comiputer, a PDP 11/44.
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