
  

  

Abstract—Managing the trade-off between performance and 
stability is a crucial issue in physical human-robot interaction, 
and this has become more important than ever apace with 
growing needs for physically human-interactive robots in many 
fields, such as assistive robotics and rehabilitation robotics. In 
this paper, we present two essential considerations for design 
and control of robots physically interacting with humans: 
energetic passivity and mechanical impedance. Characterization 
of passive, dissipative, and active behavior of the human 
neuromuscular system is essential to ensure and control 
coupled stability in physical human-robot interaction. In 
addition, characterization of human mechanical impedance at 
the interaction port provides detailed quantitative information 
to describe interactive dynamics. The importance of these 
characterizations is demonstrated by simple examples and the 
authors’ previous research on the human ankle. Implications 
for quantitative guidelines for robot design and control are 
discussed. 
 

I. INTRODUCTION 
HE demand for advanced physical human-robot 
interaction has grown in many fields, with clinical, 

industrial, and military applications. For example, a number 
of robotic exoskeletons have recently been introduced and 
commercialized to assist and rehabilitate patients having 
neurological impairments [1-3]. In addition, there have been 
significant recent advances in active prosthetic devices to 
restore amputees’ motor functions [4-6]. In industrial and 
military applications, robotic devices have been utilized 
mainly to augment human strength and endurance [7-9].  

One essential requirement in all of the above applications 
in which robots operate in close physical contact with 
humans is to achieve coupled stability and at the same time 
maximize performance. In fact, managing the trade-off 
between stability and performance has been a very important 
issue throughout the history of physical human-robot 
interaction [10-13]. 
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On the robot side, better mechanical design and 
innovation in actuator technologies, such as actuators 
capable of expressing high force density and low mechanical 
impedance, could be advantageous to improve the trade-off. 
On the other hand, on the human side, there still remains 
room to improve the trade-off with better understanding of 
human neuromuscular behavior that can be incorporated in 
the design of robotic controllers. In an effort to better 
characterize human behavior, “first-principles” models of 
human dynamics, analogous to the Lagrangian dynamics of 
a robot, have been widely used [14, 15]. While multibody 
musculoskeletal simulations provide valuable quantitative 
information predicting human behaviors in a wide range of 
dynamic tasks and enable simulation-based design of robotic 
systems [16], they have inevitable limitations arising due to 
model uncertainties and errors in simulation parameters [17]. 

To address these challenges we characterized the 
dynamics seen at the points of contact, i.e., “interaction 
ports”, where two-way energy exchange occurs between the 
human and the robot. More specifically, we quantified 
energetic passivity/non-passivity and mechanical impedance 
at the interaction port. In this paper, we describe why these 
are essential considerations for design and control of human-
interactive robots. The importance of this characterization is 
demonstrated by simple examples and the authors’ previous 
research on the human ankle. Implications for mechanical 
design and controller implementation are discussed. 

 

II. ENERGETIC PASSIVITY 

Energetic passivity, describing how a system, for any time 
period, cannot output more energy than what is stored in it, 
is a central concept to explain and ensure coupled stability in 
physical human-robot interaction. It is known that necessary 
and sufficient conditions for a system to be stable when 
coupled to any stable and passive object is that its driving 
point impedance should be energetically passive [12].  

Most physical environments that robots interact with are 
passive. Any combination of passive mechanical elements 
(springs, dampers, inertia), whether linear or non-linear, is 
energetically passive. However, there is no a priori 
justification to assume that human limbs and joints are 
fundamentally passive. Just as feedback delays usually 
compromise passivity as well as stability in robot controls, 
significant delays in human neural feedback due to limited 
nerve conduction velocity (less than 120 m/s even in the 
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fastest myelinated neurons [18]) may act as a source of non-
passivity.  

In fact, several previous studies have demonstrated that 
human neuromuscular system can exhibit significant non-
passive behavior [19, 20], and it is known that non-passivity 
of the neuromuscular system is clearly associated with reflex 
actions, which are highly modifiable [21].  

Non-passivity of the human neuromuscular system, more 
specifically active behavior, may function as an energy 
source and consequently affect coupled stability as well as 
performance in physical human-robot interaction. Thus, it is 
essential to characterize passivity/non-passivity of the 
human limbs/joints at the interaction port. Note that the 
passivity/non-passivity of interactive behavior is distinct 
from the ability of a system to generate positive work. 
Instead, it describes the generation of mechanical work, 
either positive or negative, solely based upon motion at the 
interaction port(s).  

Curl analysis and passivity analysis enable the 
quantitative characterization of energetic passivity/non-
passivity in static and dynamic conditions, respectively.  

 
A. Curl Analysis 

Curl analysis based on vector field approximation 
provides a quantification of the extent to which the 
neuromuscular system is energetically passive or non-
passive [22]. For example, consider a neuromuscular system 
physically interacting with a robot in a 2-D space. A vector 
field (V), possibly non-linear, is defined to relate 
displacements/angular displacements (r) to forces/torques 
(F) at the interaction port (Eq. (1)): 

(F1,F2 ) =V (r1, r2 )     (1) 

where subscripts 1 and 2 denote axes defining the coordinate 
system at the interaction port. The continuous field can be 
precisely approximated based on thin-plate spline smoothing 
[23] and generalized cross validation [24].  

While the vector field accurately describes the non-linear 
relationship between displacements and forces over the 
entire measured task space, a stiffness matrix (K) can be 
defined at any point in the displacement field by linearly 
approximating the relationship between the imposed 
displacements ( rδ ) and the resulting forces ( Fδ ) (Eq. (2)): 

δF = −Kδr  
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Each element of the stiffness matrix (K) can be directly 
calculated by differentiating the smoothly approximated 
(satisfying C1 continuity [22, 23]) nonlinear field (V). 

The stiffness matrix (K) is further decomposed into 
symmetric (Ks = (K+KT)/2) and anti-symmetric (Ka = 
(K−KT)/2) components [21]. The anti-symmetric component, 
or the curl (rotational) component, is non-passive since 

cyclic displacements may add or remove energy. Thus, we 
can quantify the level of passivity/non-passivity of the 
neuromuscular system by comparing the relative size of Ks 
and Ka (Eq. (3)):  

Kratio = det(Ka ) / det(Ks ) ×100   (3) 

Apparently, zero-curl (Ka=02,2) leads to Kratio = 0 , where 
the system exhibits perfectly passive behavior. 

As a simple example, suppose that the relationship 
between the imposed displacements and the corresponding 
forces at the interaction port is defined by the following two 
stiffness matrices (KG and KL): 
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The anti-symmetric matrix KL is defined to simulate 
unbalanced inter-muscular feedback at the interaction port. 
When the vector field defined by KG and KL is decomposed 
into a conservative and a rotational field, it is clear that anti-
symmetric stiffness manifests as non-zero curl in the 
rotational field (Fig. 1). In this example, cyclic counter-
clockwise motion in the region of KL will continuously add 
energy at the interaction port and hence weaken coupled 
stability.  

 
B. Passivity Analysis 

While curl analysis characterizes static behavior of the 
neuromuscular system, passivity analysis quantifies passive, 
dissipative, and active behavior at the interaction port over a 
wide range of frequencies [25].  

 
 

Fig.1. Decomposition of the vector field into a conservative field (blue) 
and a rotational field (red). The force is illustrated by an arrow with its 
tail at the tip of the displacement vector. Note that non-zero curl exists 
only in the region where anti-symmetric stiffness (KL) constitutes the 

vector field (the highlighted region). Kratio in the region of non-zero 

curl is 35.4%. 
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For the linear time-invariant case, the passivity 
formulation for a n-port system is as Eq. (4) [12, 26]:  

∀ω ≥ 0, H( jω)+HT (− jω) ≥ 0    (4) 

y( jω ) = H( jω )u( jω )  

where j  is the complex operator, the superscript T is the 
transpose operator, and ω  denotes frequency. H  is a 
transfer matrix relating inputs (u ) and outputs ( y ) to the 
system, where u  and y  are power conjugate variables that 

define power flow ( Pin = u
T y ) into the system. If equality is 

restricted from Eq. (4), the system is dissipative. 
Furthermore, when H( jω)+HT (− jω)< 0 for any frequency, 
the system is active, which means that it delivers more 
energy than what is delivered to it. 

As a simple example, suppose that the transfer matrix H  
relating input velocities ( u = v ) and the corresponding 
forces ( y = f ) at the interaction port is defined as follow, 
where s is the Laplace operator: 

y(s) = H(s)u(s)
 

H(s) =
1+ 20 / s 0.5+ 5 / s
0.5+3 / s 1+ 20 / s
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Anti-symmetric stiffness and symmetric damping are 
combined and simulated. Positive semi-definiteness/positive 
definiteness of the 2-by-2 matrix H( jω)+HT (− jω)  is 
assessed by evaluating all of the leading principal minors of 
the matrix. Apparently, the first leading principal minor is 
positive at all frequencies. The second leading principal 
minor, the determinant of H , varies with frequency (Fig. 2). 
In the low frequency region, below about 0.2 Hz where 
stiffness dominates the system response, the determinant of 
H  is negative. This active behavior is due to anti-symmetric 
stiffness as observed in the example of curl analysis. In 
higher frequencies where damping dominates the response, 

the determinant value is positive, implying that the system is 
dissipative. Thus, passivity analysis enables characterization 
of the extent to which the port behavior is passive, 
dissipative, or active over the frequency. 

 

III. MECHANICAL IMPEDANCE 

Human mechanical impedance, which describes the 
relationship between joint/limb displacement and the 
corresponding force during a perturbation, is another 
essential concept to consider in designing and controlling 
human-interactive robots. It is a fundamental property of the 
human neuromuscular system that facilitates seamless, 
dynamic interactions with the physical environment. As 
mechanical impedance may be quite different between 
individuals, it is important to accurately quantify this 
property, and the robot should incorporate this to improve its 
performance in interaction with humans. Here we describe a 
set of characterization methods to quantify multivariable 
human mechanical impedance, applicable to any multi-joint 
system or single joint having multiple DOFs. 

 
A. Static Mechanical Impedance 

The static component of mechanical impedance is a force-
displacement (or torque-angular displacement) relationship 
at the interaction port (Eq. (1)), and can be precisely 
characterized by the non-linear vector field approximation 
method described in the section II.A.  

As the field defining static mechanical impedance is 
continuous over the entire measured task space, we can 
calculate the directional variation of static mechanical 
impedance at any given nominal point in the displacement 
field. More specifically, the effective stiffness for each 
movement direction is calculated by computing the slope of 
a least squares fit to the displacement (angular displacement) 
and force (torque) data in that direction. Results in all 
movement directions can be visualized in a multi-
dimensional space. For example, in the 2-DOF case, results 
can be plotted in polar coordinates, where the angle and 
radius correspond to each movement direction in 2-D space 
and the magnitude of effective stiffness in that direction, 
respectively. 

While this method quantifies non-linear behavior of the 
neuromuscular system over a wide range of motions, it is 
only limited to the static component of the mechanical 
impedance, and cannot provide information on higher order 
dynamics. 

 
B. Dynamic Mechanical Impedance 

Dynamic mechanical impedance quantifies the 
characteristics of the neuromuscular system as a function of 
frequency, which complements the limitation of static 
mechanical impedance.  

Multivariable dynamic mechanical impedance can be 
estimated by various multi-input multi-output system 

 
 

Fig. 2. Passivity analysis for the simple example. The first and the 
second leading principal minors of the matrix H( jw) + HT (− jw) are 
presented.  
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identification methods. Among them, non-parametric linear 
stochastic system identification is preferred. First, the use of 
random white noise minimizes the likelihood of voluntary 
reactions of human subjects. Second, the non-parametric 
approach requires no a-priori assumption about the structure 
of the neuromuscular system.  

Estimation results for axes defining the coordinate system 
are represented either by a frequency response matrix or an 
impulse response matrix, depending on the method used [27]. 
In addition, with coordinate transformations, we can 
estimate the directional variation of mechanical impedance 
as described in the previous section, but now as a function of 
frequency. Estimation of multivariable mechanical 
impedance is not limited to time-invariant cases, but can be 
extended to time-varying dynamic task conditions [28].  

One limitation of this method is that multiple 
measurements with different nominal points are required to 
characterize impedance over a wide range of motions.  

Note that each method to characterize static and dynamic 
mechanical impedance has its own advantages and 
limitations; and they complement each other. Hence, a 
combination of them using the same experimental setup 
provides more elaborate characterization of the human 
neuromuscular system in various task conditions.  
 

IV. CASE STUDY: UNIMPAIRED HUMAN ANKLE 

This section presents a case study based on a series of our 
previous work on the human ankle [29, 30]. The human 
ankle plays critical roles in stabilizing and controlling the 
lower limb during interaction with the surrounding physical 
environments. For example, the ankle contributes to postural 
balance control during standing, and propulsion, shock 
absorption, and lower limb coordination during locomotion. 
Given its significance, we have characterized energetic 
passivity/non-passivity and mechanical impedance of the 
unimpaired ankle using the methods described in the 
previous sections. A brief summary of this research with 10 
young unimpaired individuals is provided below. 

A wearable ankle robot, Anklebot (Interactive Motion 
Technologies Inc., Watertown, MA) [31], was utilized as a 
centerpiece of the study. The robot has very low intrinsic 
mechanical impedance, allowing human subjects to move 
the ankle with minimal resistance, i.e., it is highly back 
drivable. It allows normal range of motion in all 3 degrees-
of-freedom (DOFs) of the foot and actuates its 2 DOFs 
including inversion-eversion (IE) and dorsiflexion-
plantarflexion (DP) motions (Fig. 3A).  

For curl analysis, the torque-angle relationship at the 
ankle in 2 DOFs (IE−DP) was measured under different 
muscle activation conditions; fully relaxed, tibialis anterior 
(TA) active, soleus (SOL) active, and co-contraction of both 
TA and SOL. The target activation level was set as 10% of 
the maximum voluntary contraction (MVC) of each muscle. 
A simple impedance controller (proportional gain: 200 

Nm/rad; derivative gain 1 Nms/rad) was used to deliver 
quasi-static (10°/s) ramp perturbations to the 2 DOFs of the 
ankle with nominal displacement amplitude of 15°. 

When muscles were fully relaxed, curls in the rotational 
field were statistically indistinguishable from zero [22]. 
When muscles were active, either unilaterally or 
antagonistically, statistically non-zero curls were observed in 
some regions of the rotational field (Fig. 3B). However, this 
non-passive behavior was modest in the young unimpaired 
subjects we studied. It was evidenced by the observation that 
a large portion of the curls in the rotational field fell within 
the zero-curl criterion. Furthermore, calculation of Kratio  
showed that the anti-symmetric parts of the stiffness matrix 
(Ka) were substantially smaller than its symmetric parts (Ks) 
(Table. 1). 

  For passivity analysis, inputs (u ) and outputs ( y ) at the 
interaction port were selected as torques and angular 
velocities in coordinates (IEʹ′−DPʹ′), defined by rotating the 
original joint coordinates (IE−DP) by 45° counter-

 
 
Fig. 3. Representative results from the ankle study. A: The robot was 
attached to the knee brace and the custom designed shoe. Measurements 
were performed in the seated posture. B: An example from the curl 
analysis (SOL active study). Black lines in the rotational field denote 
statistically significant non-zero curl. C: Group results from the 
passivity analysis (SOL active study). Diagonal elements and the 
determinant of T( jw) = H( jw) + HT (− jw) are presented. D: (Left) 
Directional variation of ankle mechanical impedance as a function of 
frequency (1~20 Hz) in fully relaxed muscles. (Right) Directional 
variation of ankle mechanical impedance (averaged below 10 Hz) with 
SOL active [30]. 
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clockwise: u = !τ = (τ I !E ,τ D !P ) and y = !ω = (ω I !E ,ωD !P ) . The 
study was performed under different muscle activation 
conditions; fully relaxed and different target levels of TA 
and SOL activity, from 10% to 30% MVC with increments 
of 5% MVC. To calculate the transfer matrix (H) relating 
input torques and the corresponding output angular 
velocities, linear time-invariant multi-input multi-output 
system identification methods were used [27]. A simple 
impedance controller with a proportional gain (37.2 and 76.0 
Nm/rad for IE and DP directions, respectively) was 
combined with mild random torque perturbations to excite 
the ankle while holding it around its initial position against 
active ankle torques [30]. 

Active behavior of the ankle was modest over a wide 
range of frequency (Fig. 3C). In the low-frequency region 
below about 2 Hz where stiffness dominates, the ankle 
behavior was close to passive (H( jω)+HT (− jω) ≈ 0 ). Only 
a few subjects (one in the TA active study and three in the 
SOL active study) exhibited active behavior. The relative 
size of the anti-symmetric and symmetric parts of the 
impedance matrix ( Z(s) = !τ (s) / !θ (s) ) was calculated 

similarly as Eq. (3) ( Zratio ). When averaged below 2 Hz, it 
was less than 10% (Table. 1). In the frequency region above 
about 3 Hz up to 10−20 Hz, the ankle behavior gradually 
changed to dissipative ( H( jω)+HT (− jω)> 0 ), indicating 
that this region was dominated by ankle viscosity. 
Dissipative behavior weakened gradually at higher 
frequencies as inertia became predominant. 

Static and dynamic ankle mechanical impedances were 
estimated from the same data sets for curl analysis and 
passivity analysis, respectively. One major finding is that 
both static and dynamic ankle impedances of young 
impaired subjects were strongly direction dependent.  Ankle 
mechanical impedance was weaker in IE than DP direction, 
resulting in a characteristic “peanut” shape structure over a 
wide range of frequencies [32]. When muscles were active, 
either unilaterally or antagonistically, ankle mechanical 
impedance increased in all movement directions in the IE–

DP space, but impedance increased more in DP than IE 
direction, accentuating the characteristic “peanut” structure 
(Fig. 3D) [30].  

 

V. DISCUSSION: IMPLICATIONS FOR DESIGN AND CONTROL 
OF HUMAN-INTERACTIVE ROBOTS 

How could quantitative characterization of energetic 
passivity and mechanical impedance be utilized to improve 
the trade-off between stability and performance in physical 
human robot interaction?  

Characterization of energetic passivity provides a 
guideline to adjust mechanical impedance of a robot at the 
interaction port. If a human subject interacting with a robot 
exhibits highly dissipative behavior, designing a robot 
controller to achieve passive driving point impedance might 
be unnecessarily conservative and hence limit performance. 
To better utilize the robot’s performance, less conservative 
approaches may be chosen by controlling the robot’s 
mechanical impedance to be active while still maintaining 
robust coupled stability. For example, our work 
demonstrated that the ankle of healthy young humans is 
predominantly passive and dissipative over a wide range of 
frequency. This suggests that lower-extremity robotic 
devices in industrial and military applications, where high 
performance matters, may be controlled with less 
conservative control strategies without compromising 
coupled stability. 

On the other hand, if the human subject exhibits 
energetically active behavior, the robot should compensate 
this by being strongly dissipative to secure coupled stability. 
In fact, we may expect significantly active behavior from 
neurologically impaired individuals, who are potential 
beneficiaries of assistive and/or rehabilitation robots. For 
example, previous studies have demonstrated that both 
intrinsic and reflexive properties of the impaired ankle are 
significantly different from those of unimpaired subjects. It 
is probable that the damage to central and peripheral neural 
networks following impairments, such as stroke [33, 34], 
multiple sclerosis [35], and spinal cord injury [36] alters 
reflex feedback. At the early stage of rehabilitation, it is 
desirable to design the robot to be strongly dissipative to 
cope with the patient’s active behavior. As the patient 
recovers and the degree of non-passivity improves, the 
robot’s dissipativity could be modulated as needed.  

Another application of quantitative information about 
energetic passivity is human motor control and learning. 
Adaptation strategies similar to those introduced for 
rehabilitation might apply to unimpaired subjects as they 
initially learn how to operate robotic devices such as exo-
skeletons: start with the robot dissipative; progressively 
adapt towards passive; and maybe to non-passive if it 
provides performance benefits. 

Characterization of mechanical impedance further 
provides a quantitative guideline to optimize the trade-off 
between stability and performance. For example, loop- 
shaping algorithms based on complementary stability 
outperform passivity-based controllers [37]. This algorithm 

TABLE I. RELATIVE SIZE OF NON-PASSIVE ELEMENTS  
TO THE PASSIVE ELEMENTS [%] 

 

  Kratio  
in curl analysis 

TA active  SOL Active Co-contraction 
11.5 
(2.0) 

13.7 
(3.2) 

11.3 
(3.4) 

Zratio in passivity analysis 

 10% 
MVC 

15% 
MVC 

20% 
MVC 

25% 
MVC 

30% 
MVC 

TA 
active 

7.9 
(4.5) 

7.7 
(4.0) 

3.8 
(1.6) 

5.8 
(4.5) 

5.4 
(2.4) 

SOL 
active 

10.0 
(6.6) 

6.6 
(4.6) 

6.9 
(5.4) 

6.6 
(4.9) 

6.3 
(4.7) 

Mean and standard deviation (in parentheses) of 10 subjects are 
presented. 
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incorporates limited knowledge of environments to improve 
performance. Better characterization of the human 
neuromuscular system is expected to provide more accurate 
information on the environment that the robot interacts with, 
and may further improve performance while still 
guaranteeing coupled stability. 

Refined characterization of mechanical impedance is also 
beneficial to robot design. By incorporating information on 
the directional variation of mechanical impedance, we can 
optimize mechanical design, e.g. inertia distribution, as well 
as actuator selection. For example, highly directional 
information about the ankle being weakest in IE direction 
informs that an ankle robot is desired to have higher torque 
capacity in the sagittal plane than in the frontal plane. 

In summary, characterization of energetic passivity and 
mechanical impedance provides quantitative guidelines to 
optimize mechanical design and control strategies to 
maximize performance and secure coupled stability at the 
same time.  In such a way, this study may facilitate further 
innovation in physically interactive robots in many fields 
including assistive robotics and rehabilitation robotics. 
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