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Park SW, Marino H, Charles SK, Sternad D, Hogan N. Moving
slowly is hard for humans: limitations of dynamic primitives. J
Neurophysiol 118: 69-83, 2017. First published March 29, 2017,
doi:10.1152/jn.00643.2016.—Mounting evidence suggests that hu-
man motor control uses dynamic primitives, attractors of dynamic
neuromechanical systems that require minimal central supervision.
However, advantages for control may be offset by compromised
versatility. Extending recent results showing that humans could not
sustain discrete movements as duration decreased, this study tested
whether smoothly rhythmic movements could be maintained as du-
ration increased. Participants performed horizontal movements be-
tween two targets, paced by sounds with intervals that increased from
1 to 6 s by 200 ms per cycle and then decreased again. The instruction
emphasized smooth rhythmic movements without interspersed dwell
times. We hypothesized that /) when oscillatory motions slow down,
smoothness decreases; 2) slower oscillatory motions are executed as
submovements or even discrete movements; and 3) the transition
between smooth oscillations and submovements shows hysteresis. An
alternative hypothesis was that 4) removing visual feedback restores
smoothness, indicative of visually evoked corrections causing the
irregularity. Results showed that humans could not perform slow and
smooth oscillatory movements. Harmonicity decreased with longer
intervals, and dwell times between cycles appeared and became
prominent at slower speeds. Velocity profiles showed an increase with
cycle duration of the number of overlapping submovements. There
was weak evidence of hysteresis in the transition between these two
types of movement. Eliminating vision had no effect, suggesting that
intermittent visually evoked corrections did not underlie this phenom-
enon. These results show that it is hard for humans to execute smooth
rhythmic motions very slowly. Instead, they ‘“default” to another
dynamic primitive and compose motion as a sequence of overlapping
submovements.

NEW & NOTEWORTHY Complementing a large body of prior
work showing advantages of composing primitives to manage the
complexity of motor control, this paper uncovers a limitation due to
composition of behavior from dynamic primitives: while slower
execution frequently makes a task easier, there is a limit and it is hard
for humans to move very slowly. We suggest that this remarkable
limitation is not due to inadequacies of muscle, nor to slow neural
communication, but is a consequence of how the control of movement
is organized.
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ONE OF THE DELIGHTFUL PARADOXES of motor neuroscience is that
human agility and dexterity vastly exceed modern robots—
despite much slower actuation, information transmission, and
computation. One possible resolution of this paradox is the
hypothesis that human actions are composed of “dynamic
primitives”: dynamic primitives may be implemented without
continuous intervention from higher levels of the central ner-
vous system, yet each generates highly dynamic behavior
(Hogan 2017; Hogan and Sternad 2012, 2013; Sternad 2008;
Sternad et al. 2000). The proposed dynamic primitives are
members of at least three distinct classes of “dynamic attrac-
tors” that may arise from the interaction of neural networks:
submovements, oscillations, and mechanical impedances, the
latter to account for physical interaction with external objects.
Submovements and oscillations in particular are conceived as
arising from dynamic attractors that generate observable dis-
crete and rhythmic movements, respectively. An operational
definition of submovements is provided in the appENDIX. Def-
initions of discrete and rhythmic movements are provided in
Hogan and Sternad (2007).

While this strategy, combining complex actions from limited
classes of dynamic primitives, may “work around” the sluggish
response of biological “hardware” and “wetware” by reducing
the need for continuous central intervention, it may also have
disadvantages. In particular, we hypothesize that it may impose
limitations on motor behavior. The experimental study pre-
sented here probed simple arm movements to test whether they
exhibited limitations that arose from being composed of dy-
namic primitives (submovements and oscillations).

Support for motor primitives underlying motor actions is
evident in several different lines of prior work (Bizzi et al.
2008; Flash and Hochner 2005; Giese et al. 2009; Giszter
2015). Several studies have provided evidence that discrete and
rhythmic movements are mediated by different neural circuits.
For example, Hira et al. (2015) showed that distinct regions in
the motor cortex of rodents are associated with rhythmic and
discrete movements. A human neuroimaging study revealed
significantly different cerebral activation for the two types of
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movements (Schaal et al. 2004): in continuous rhythmic wrist
movements, cerebral activation was largely confined to unilat-
eral primary motor areas, whereas discrete movements elicited
strong additional activity in the bilateral parietal cortex and
cerebellum. Transcranial magnetic stimulation-induced activa-
tion of the tibialis anterior has revealed different responses
during rhythmic and discrete movements (Goto et al. 2014).
Concomitant behavioral results reinforced these differences.
For example, Ikegami et al. (2010) showed that adaptation to
altered visuomotor conditions was almost fully transferred
from discrete to rhythmic performance, while there was min-
imal transfer in the reverse direction. Howard et al. (2011)
reported that, during learning of reaching movements in two
force fields with different directions, interference was reduced
when movements in different fields were performed in a
different manner, rhythmic or discrete. Furthermore, neurolog-
ical evidence supporting dynamic primitives underlying motor
behavior is found in persons recovering after cerebral vascular
accident (stroke). Their earliest recovering movements are
distinctly “quantized,” exhibiting fluctuations with highly ste-
reotyped velocity profiles (Krebs et al. 1999). Remarkably, as
recovery proceeds, these submovements overlap and blend to
approximate more closely the smoothness of unimpaired
movements (Rohrer et al. 2002, 2004). A more recent study of
stroke survivors showed that rhythmic movements were better
preserved than discrete movements (Leconte et al. 2016).

Evidence of limitations arising from the composition of
motor actions from dynamic primitives was demonstrated in a
recent study (Sternad et al. 2013). The discreteness of a
sequence of movements could not be sustained as their pace
increased. Subjects switched to rhythmic performance of os-
cillatory movements; dwell times disappeared and the move-
ments merged to smooth rhythmic performance. [A quantita-
tive distinction between rhythmic and discrete movements was
proposed in Hogan and Sternad (2007)]. This transition from
discrete to rhythmic performance could not be dismissed as a
shortcoming of peripheral biomechanics, because an auditory
cue changed the pace at which the transition occurred.

That study of accelerating discrete movements showed that
the parameters of these dynamic primitives are limited; in
particular, a periodic sequence of discrete movements could
not be sustained as its pace increased. The present study
complements and extends that prior work by examining decel-
erating oscillatory movements made by moving the hand be-
tween two targets in a plane while paced by a metronome. It
was designed to test our hypothesis that oscillatory primitives
are characterized by a limited range of parameters. In partic-
ular, we predict that sufficiently slow oscillatory movements
cannot be executed smoothly by oscillatory primitives. Hy-
pothesis 1: Oscillatory motion smoothness decreases as period
increases. We quantify smoothness by harmonicity, i.e., devi-
ation from harmonic motion.

Instead, we propose that when rhythmic movements are
executed sufficiently slowly, they “fall apart” into discrete
movements. Discrete movements are separated by dwell times,
a nonzero interval where both velocity and acceleration are
zero (Hogan and Sternad 2007). In addition, even without
decomposition into discrete movements, we propose that slow-
ing down oscillatory movements engenders an unavoidable
increase of irregularity. To corroborate this change in kinemat-
ics, we conducted a finer-grained analysis to identify submove-

ments: Assuming a lognormal shape as a basis function, we
performed an optimization procedure that fit submovements to
each velocity profile. Importantly, the underlying submove-
ments differ from discrete movements in that they may overlap
in time. Hypothesis 2: Slower oscillatory motions are executed
as a sequence of discrete movements, separated by dwell times,
Sfurthermore, individual movements show an increasing num-
ber of submovements. We tested this hypothesis in two ways:
first, we measured dwell time, i.e., the time spent at rest at the
end of each movement, a distinctive signature of discrete
movements; second, we measured the number of submove-
ments underlying each movement. We predict that both mea-
sures increase as period increases.

In nonlinear systems that have multiple stable states, transi-
tions between different states typically depend on the history of
states such that transitions in opposite directions may exhibit
an asymmetry termed “hysteresis.” This is particularly the case
in systems that have a lag between input and output, as in
numerous physical systems, and clearly also in biological
systems, and in particular motor systems. For example in
human locomotion the transition from walking to running
typically happens at a speed higher than the transition from
running to walking, although the reverse has also been reported
(Diedrich and Warren 1995; Getchell and Whitall 2004; Hrel-
jac 1995; Li 2000; Thorstensson and Roberthson 1987). Hence
we expect that any transition from one class of primitives (e.g.,
oscillations of the kind that might be generated as limit-cycle
behavior) to another class (e.g., submovements of the kind that
might be generated as point-attractor behavior) exhibit a be-
havioral asymmetry or hysteresis. Hypothesis 3: The transition
between oscillatory and submovement primitives when periods
increase differs from when they decrease. Specifically, we
predict that if oscillatory movements slow down, a transition to
a sequence of submovements will occur at longer periods than
the reverse transition (submovements to smooth oscillations)
when movements speed up, because the system tends to persist
in its current state.

An alternative theory is that submovements emerge from an
intermittent feedback control process as visually evoked cor-
rections to an ongoing movement (Craik 1947; Meyer et al.
1988, 1990). If that is the case, removing visual feedback
should eliminate the irregularity due to intermittent control, or
at least substantially reduce it. Hypothesis 4: Removing visual
feedback substantially restores smoothness to slow oscillatory
motions. Specifically, we compare movements with and with-
out visual feedback.

Observations consistent with hypotheses 1 and 2 would
represent motor limitations exclusively due to wetware—the
neural organization of motor control—rather than the more
obvious shortcomings of neuromechanical hardware. Confir-
mation of hypothesis 3 would inform details of how the
wetware may be implemented, i.e., as interacting nonlinear
dynamic systems. Confirmation of hypothesis 4 would support
an alternative control mechanism that might generate irregu-
larity in slow oscillatory motions, due to visual corrections of
deviations from a desired trajectory.

To test these hypotheses, we conducted experiments in
which unimpaired subjects were instructed to perform smooth,
rhythmic arm movements (i.e., with no dwell time at zero
speed) between two targets, both with and without visual
feedback, in synchrony with a metronome that dictated pro-
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gressively longer periods. We found that humans could not
perform slow, smooth, oscillatory movements. Harmonicity
decreased with cycle period, consistent with composition as a
sequence of submovements. Despite instructions, we observed
dwell times at movement extremes which became increasingly
prominent at the slower speeds. We found only weak evidence
of asymmetry (hysteresis) in the transition between these two
classes of movement. We also found that eliminating vision
had no effect, suggesting that intermittent visual feedback did
not underlie this phenomenon.

METHODS

Ten volunteers with no (self-reported) neurological or biomechani-
cal abnormalities participated in this experiment (19-43 yr old, 6
male and 4 female). Nine subjects were right-handed according to the
Edinburgh handedness test; one subject was left-handed (Oldfield
1971). One of the 10 subjects did not comply with task instruction and
performed with periods that significantly and unsystematically devi-
ated from the metronome. Those data were eliminated from further
analysis. Prior to data collection, participants were informed about the
experimental procedure and signed an informed consent form; the
study protocol was approved by MIT’s Institutional Review Board.

Experimental Apparatus and Data Collection

Participants were seated in front of a table, with the sternum close
to the table edge (Fig. 1). To fixate shoulder position, two belts tied
the upper body to the back of the chair. For reference to place subjects
in comparable positions, a location was marked on the table. This
reference mark was in the subject’s midsagittal plane, 23 cm away
from the edge of the table (in the anterior-posterior direction) and ~26
cm distant from the subject’s sternum. The height of the chair was
adjusted to position the subject’s upper arm to be ~45° from horizon-
tal; the forearm rested lightly on the table. From this neutral position,
the subject could perform a reaching movement forward and back-
ward in the sagittal direction, involving both shoulder and elbow

Fig. 1. Experimental setup. Subjects held a handle with a magnetic sensor
attached that measured hand position and displayed it on a monitor. Subjects
were instructed to perform continuous smoothly rhythmic movements forward
(away from the body) and backward (toward the body) in the parasagittal
plane, sliding on the horizontal table surface. Movement amplitude was
indicated by 2 large circles on the monitor.

joints without reaching the limits of their workspace. The forearm was
mounted on a low-friction skid that reduced surface static and kinetic
friction. A brace stabilized the wrist to discourage wrist rotation.

Two circular targets were shown on a vertical screen to instruct
movement amplitude (Fig. 1). Targets were at a distance of =14 cm
from the neutral position corresponding to the reference mark on the
table, specifying a movement distance of 28 cm. The targets had a
diameter of 10 cm, which was intentionally large so that accuracy
requirements were minimal. The screen was placed at a distance of
~65 cm from the eyes and the display gain was 0.5, showing targets
and movements at half their real size. Subjects were asked to move the
hand back and forth from target to target on the table in a parasagittal
plane. A computer-generated audio signal prescribed movement tim-
ing.

Subjects grasped a handle onto which a magnetic Flock of Birds
sensor was attached (Ascension Technologies, Burlington, VT). Its
static accuracy and resolution were 0.25 cm and 0.08 cm, respectively.
The combined weight of the sensor and handle was ~70 g, which is
~1/8 of the weight of the hand. The sampling frequency was 100 Hz.
This frequency was sufficient as the frequency content of the motion
was significantly below 50 Hz and antialiasing was not required.
Position was zeroed with the handle in the neutral position shown by
the reference mark on the tabletop. Position in the plane of the table
was displayed in real time by a cursor on the screen. Care was taken
to ensure that all participants were similarly able to reach both targets.
To reach the distant target, subjects had to extend their arms, although
not completely; reaching to the target nearest the subject was not
difficult. Data collection for off-line analysis was controlled by a
custom-made software routine written in C and Tcl/Tk on a computer
running the Linux operating system.

Experimental Conditions and Procedure

At the beginning of each trial participants placed their hand at the
reference position. All participants used their dominant hand. They
were then instructed to perform smooth forward-and-backward cyclic
movements between targets in synchrony with the metronome sounds
(one sound per back-and-forth cycle) but without stopping at the ends,
i.e., with no dwell time. All metronome sounds had a duration of 50
ms. The metronome sequence took the following form for all trials:
The trial began with 10 sounds separated by an interval of 1 s,
presenting a constant periodic signal for 10 s. Subsequently, 25
sounds were produced where each interval increased by 200 ms,
ending at an interval of 6 s. This long interval was sustained for 5
sounds, equivalent to a duration of 30 s. After this constant periodic
interval, another 25 sounds with a decreasing interval of 200 ms
followed. The trial ended with 10 sounds of 1-s cycle interval. The
total trial duration was 225 s for a sequence of 75 cycles. Figure 2
shows the sequence of cycle intervals as a function of time and also
as a function of cycle number. The figure also includes the change of
intersound interval as a percentage of the previous intersound interval
to highlight that the changes were initially large at 20% but then
decreased to a minimum of 4%.

This same timing sequence was presented in two different percep-
tual conditions. In the “vision” condition, subjects had their eyes open
and executed their movements to the targets displayed on the monitor.
In the “no-vision” condition, subjects were asked to make the same
amplitude movements with their eyes closed, which removed explicit
visual feedback. These two conditions were repeated twice, both times
starting with the vision condition, followed by the no-vision condi-
tion. The total duration of these four experimental trials was ~20 min,
with short breaks inserted between trials. Prior to data collection, each
participant performed several movements with the metronome to
familiarize him/herself with the task.
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Fig. 2. The sequence of metronome intervals and their corresponding percent-

age change as a function of cycle number (A) and time (B). The shaded areas
mark the segments with constant periods.

Data Reduction and Analysis

Of the 3D signals from the Flock-of-Birds sensor only horizon-
tal displacements in the parasagittal direction were processed.
Figure 3 shows a complete time series of one trial, divided into five
segments for display. The time series reveals the change in kine-
matic shape from the initial faster movements to the slower paced
sections of the trial. The vertical lines denote the onset of the
metronome sound; the red dots mark the onset and offset of each
movement (defined below).

Before extracting quantitative markers, the position data were
smoothed using a five-sample moving average filter with centered
filtering, using the “smooth” function in MATLAB to avoid phase lag.
Velocity was obtained numerically from the two-sample difference of

LIMITATIONS OF DYNAMIC PRIMITIVES

the position signal, and was smoothed again with the same five-
sample moving average filter. This differentiation introduced a delay
of approximately half a sample (5 ms), which was considered negli-
gible.

Parsing into Single Movements

For all analyses, the continuous kinematic data were parsed into
single movements, delimited by 7., and ¢,,,. Both onset and offset
of one movement were defined by the time when velocity crossed a
threshold, defined as 3% of the peak velocity of the same movement.
Given that subsequent measures depended on this temporal demarca-
tion, alternative thresholds of 1 and 5% were compared for their
influence on subsequent analyses. No significant differences were
identified and we opted to use 3% throughout. To minimize the
possibility of false detection of dwell time between movements
(e.g., due to noise in the data), linear regressions of velocity onto
time were applied to the velocity samples between ¢,,, of one
movement and 7,,,,, of the next. The number of samples for this
regression varied between 3 for fast movements up to 100 for slow
movements. If the linear fit was sufficiently good (defined by
R>>0.70) and the regression slope, or acceleration, was greater
than 0.25 cm/s?, the segment was considered part of a continuous
trajectory. In this case, 7., and t,,, (shown respectively by the
forward-facing and backward-facing triangles in Fig. 4) were
merged into one time point, defined by the sample with the lowest
speed in this segment. This point then defined the common time
that separated adjacent movements. If the regression slope was less
than 0.25 cm/s?, 1,,,,, and t,,,, were regarded as distinct and were
retained, i.e., there was a dwell time DT between movements. If the
linear fit was poor (defined by R*<0.70) the demarcation points
t and ¢,,,, were retained and the dwell time between them was

onset

calculated. The threshold value of R* prevented intervals with very
noisy samples from being misidentified as a continuous trajectory
with nonzero slope. Multiple prior tests of R* values between 0.5
and 0.9 showed that the threshold was sufficiently conservative in
classifying dwell times. The results reported here were not sensi-
tive to the specific value of R>.

Fig. 3. A complete time history of 1 trial. Gray
vertical lines indicate the onset of the metronome
sounds. Red dots mark the onset and offset of each

Position (cm)

movement (see METHODS).

—— Metronome sounds
t,..andt .

onset

| 1 1 1 |
230 235 240 245 250
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Fig. 4. Estimation of dwell time based on position and velocity of a short trial
segment. For each movement, its onset 7,,,,,, (forward-facing triangle) and end
t,.a (backward-facing triangle) was first assigned to the time when velocity
rose above and (respectively) fell below 5% of the peak velocity of the
intervening movement. A linear regression of velocity onto time was then
applied to the samples between ,,,, of one movement and z,,,,, of the next. If
the regression slope reliably exceeded 0.25 cm/s” (i.e., with R* > 0.70) the
adjacent t,,,, and ¢,,,,., were merged into a single time point. This occurred at
t = 21 s in the data above. If the regression slope was less than 0.25 cm/s? or
was unreliable (R* < 0.70), the distinct values of t,,, and t,,,,, were retained

and dwell time was nonzero. This occurred at t = 22 s and ¢ = 23.5 s in the
data shown.

Cycle Time, Movement Time, and Dwell Time

Cycle time CT,; was defined as the interval between two adjacent
forward-movement onsets

CT[ = ll)m‘et,i+1 - t()m'et,i
Movement time of one move MT; was defined as
MTj = tend,j - tonset,j

where j denotes the movement number.

Hogan and Sternad defined discrete movements as characterized by
a nonzero dwell time between adjacent movements (Hogan and
Sternad 2007). If distinct values of ¢,,., and ¢,,, were retained
following the regression slope test described above, the time between
two adjacent movements defined the dwell time DT;

DT. =

i=1

1

onset,j+1 — lend,j

where j and j+1 denote adjacent movement numbers. Conversely, if

tonser and ,,, were merged into one time point, DT was zero.

Analysis of Rhythmicity

A common measure of rhythmicity is harmonicity, or closeness to
a sinusoidal trajectory. Several quantifiers have been suggested in
previous studies (Guiard 1993; Hogan and Sternad 2007). For each of
the trajectories the velocity profile between ¢,,,,,, and ,,,, was fit with

a half sinusoid using least-square regression

t—t
B(1;A) = Asin(w onet

end — Lonset

)s re (tom'et? tem[)

As the movement time was determined by ?,,,—7,,..» only the
amplitude had to be fit. The Goodness of Fit (GoF) was defined for
each movement as

[ vy = seoar
GoF =100 1 — ——F———|,

J vl

Note that the above computations of onset, offset, movement time,
cycle time, dwell time, and harmonicity were independent of the
subsequent analysis of submovements.

GoF = 100%

Submovement Extraction

The velocity profile of each single movement (between ¢,,,,., and
t,,) Was parsed into a sum of submovements using the globally
optimal algorithm described in Rohrer and Hogan (2003, 2006). Each
submovement had a lognormal velocity profile with bounded support.
This versatile shape can be lepto- or platykurtic with positive or
negative skewness and has been shown to provide the best fit to upper
extremity movements of 19 alternative candidates (Plamondon et al.
1993; Vaisman et al. 2013). The speed profile was described by

AT?
do(ty + T — 1)t — 1)
t— l()

2
exp{—[ln(m> — [J,:| . ﬁ}’ tE (g, tg+ 1)

where t is the onset time, 7 is a duration parameter, A is a scale factor
of the profile, w represents the skewness of the profile, and o is similar
to a standard deviation (larger values yield wider profiles). The
algorithm maximized GoF for a fixed number of submovements k,
starting with &£ = 1 in the first iteration; this number was increased by
one in each subsequent iteration. GoF of the reconstruction of each
single movement was defined as

1 v = solar
vt

where v is the reconstruction of each single movement, i.e., the sum
of k submovements.

The algorithm stopped when the improvement of the GoF measure
due to adding one more submovement was less than 1%. For an
alternative algorithm for submovement analysis see Gowda et al.
(2015).

At;tg, T, p, 0, A) =

GoF=100 ,  GoF =100%

Parameter Bounds

The number of submovements per movement was limited to 10,
although this limit was never reached with the chosen GoF threshold.
T and ¢, were limited so that all submovements started between ¢,,,,,
and ¢,,,, and lasted no longer than ¢,,,, — 7,,,..,- The other bounds were
set to AE[0.1,1]Xmax w(7); nE[—1,1]; 0€[0.3,0.8]. At shorter peri-
ods this procedure typically yielded two submovements per half-
cycle; at longer periods, five. As discussed below, these parameter

bounds did not limit the fitting results.

Submovement Latency, Skewness, and Duration
Latency L, between adjacent submovements was defined as
Ly = to g1 — tox

where 1, , and ¢, ,, ; denote the onset times of adjacent submovements
with index k and k+1. Note that submovements could overlap; the
separation of submovements is conceptually quite different from
dwell time determined based on the measured velocity profile.
Skewness was quantified by u, /0. The submovement profile could
be strongly skewed (up to w,/o, = *=3.33) with a long “tail” at its
beginning or end. As a result, the parameter 7} overrepresented the
duration of the kth submovement. To mitigate distortion due to
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skewness, submovement duration was quantified by the time interval
between ascending and descending crossings of half of the peak
submovement velocity.

Statistical Analyses

Comparison of the different measures in the two conditions was
performed using two-way repeated-measures analysis of variance
(ANOVA). A first analysis of variance compared the three steady-
state segments of each trial, cycle 1-10, 36—40, and 66-75, using a
3 (segment) X 4 (trial) repeated-measures ANOVA. A second anal-
ysis of variance examined the accelerating and decelerating portions
using a two-way 2 (segment) X 4 (trial) ANOVA. Multiple pairwise
comparisons (paired-sample -tests) with Bonferroni corrections were
run to perform post hoc analyses. Degrees of freedom were adjusted
based on the Greenhouse-Geisser correction when sphericity was
violated. Prior to analysis, values that exceeded 3 standard deviations
from the mean were excluded from data analysis. A significance level
of P = 0.05 was used for all analyses.

RESULTS
Cycle Times

Our first concern was whether subjects competently per-
formed the task. Figure 5, A and B respectively plot cycle time
against the corresponding cycle number for all trials of one
subject and means of all subjects and standard deviation. In
general, subjects followed the metronome, although variability
increased as the instructed interval increased. A first analysis
focused on cycle times in the three steady-state segments. A 3
(segment) X 4 (trial) ANOVA identified a significant main
effect for segment, F; | g g = 2,995.50, P < 0.001, but not for
trial, Fy 4,5 = 0.83, P = 0.423, nor for their interaction,
Fy51,3=0.74, P = 0.463. As expected, post hoc analysis
confirmed that the cycle time in the middle segment was
significantly longer (P < 0.001), while no significant differ-
ence was detected between the first and last segments (P = 1).
The mean cycle times and their standard error in the three
segments were 0.97 = 0.03, 5.76 = 0.23, and 0.97 = 0.07 s,
which were close to the metronome intervals of 1.0 s and 6.0
s as instructed.

To examine performance in the two transient segments, two
separate linear regressions of cycle time onto cycle number were
performed for the accelerating and decelerating segments within
each trial. The R*-value was submitted to a 2 (segment) X 4 (trial)
ANOVA. The segment effect was significant, F'; g = 9.29, P =
0.016, but neither the trial effect, F5 5, = 0.71, P = 0.557, nor the
interaction were significant, F, 6, = 0.81, P = 0.465. These
results indicated that the cycle times in the increasing segment
deviated more from the metronome (R*> =0.90 =+ 0.07) than in the
decreasing segment (R* = 0.95 = 0.05). This might signal that it
is more difficult to synchronize with lengthening intervals than
with shortening intervals. Despite these subtle differences, we
concluded that subjects followed instructions adequately.

The absence of a trial effect indicated that there was no
evidence of learning, nor any evidence that vision or its
absence affected performance.

Harmonicity

Hypothesis 1 predicts that humans cannot perform slow,
smooth oscillatory motions. The most evident feature of per-
formance, common to all subjects, was that the shape of the

speed profile changed with duration, becoming visibly more
irregular as movements slowed. To quantify this effect, each
half-cycle (forth or back) was fit with a half-sinusoid as
described above. Figure 6A shows exemplary measured speed
profiles with the best-fit half-sinusoid superimposed for /)
movements in the initial segment with an instructed cycle time
of 1 s (top row); 2) movements in the transient segment where
instructed cycle time changed continuously (middle row), and
3) movements in the segment with an instructed cycle time of
6 s (bottom row). In all cases, the speed profiles were not
strictly sinusoidal and at best only approximately periodic
(Hogan and Sternad 2007). However, the slower speed profiles
deviated significantly more from sinusoidal. Harmonicity was
quantified by the GoF between the measured speed profile and
the “best-fit” sinusoid and is plotted against the cycle number
for one subject across the four trials in Fig. 7A; the average and
standard error of the mean over all subjects are presented in
Fig. 7B.
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Fig. 5. Cycle time as a function of cycle number. A: data for all 4 trials of 1
exemplary subject. Gray line indicates period prescribed by the metronome.
The shaded areas mark the segments with constant periods. B: mean values of
all subjects and trials. Means are calculated across 9 subjects and 4 trials and
for both movements within a cycle. The gray shading depicts the standard
deviation.
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Fig. 6. Exemplary fits of half-sinewaves (A) and submovements (B) to measured velocity profiles in 3 different segments of a trial (top row: fast; middle row:
transient; bottom row: slow). The dashed lines show the fit to the measured velocity, shown as continuous green lines. The continuous blue lines show the

submovements used to fit the measured velocity.

The same ANOVA compared harmonicity in the three
steady-state segments and across the four trials. We found a
significant effect for segment, F, ;5 = 213.56, P < 0.001, but
again no ftrial effect, F5,, = 0.94, P = 0.439, nor an interac-
tion, F3,,55 = 0.65, P = 0.688. The significant segment
effect was due to the longer middle segment (P = 0.021); there
was no significant difference between the first and last seg-
ments, I, g = 2.95, P = 0.372. The harmonicity measures in
the three segments were 88 * 2.7, 69 = 4.2, and 90 = 1.8. The
significant difference between steady-state segments strongly
supports hypothesis 1.

The same ANOVA compared harmonicity in the two tran-
sient segments but found no significant effects: segment:
F,3=0.23, P = 0.883; trial: F;,, = 1.03, P = 0.397; inter-
action: F3,4 = 0.77, P = 0.521. The absence of any significant
difference between transient segments contradicts hypothesis
3. The absence of any trial effect indicated that there was no
evidence of learning. Neither was there any evidence that
vision or its absence affected performance, contradicting hy-
pothesis 4.

Dwell Time

Hypothesis 2 predicts that slower oscillatory movements are
executed as a sequence of discrete movements, separated by
increasing dwell times between ¢, and ¢,,,—the distinctive
signature of discrete movements. Figure 84 shows dwell times
of a single subject in a single trial. Figure 8B shows the mean

of dwell time for all subjects combined. Note that in the single

subject’s data there is a gap between the zero dwell times and
those of nonzero duration. This minimum nonzero duration
was not due to sampling nor an artifact of the dwell time
calculations. The minimum dwell time for all subjects was 30
ms (3 samples). Dwell times were visibly longer in slower
movements, while for many cycles in the initial and final
segment, dwell time was zero. To test this observation statis-
tically, the dwell times of all subjects were submitted to two
ANOVAs. The first compared the steady-state segments and
identified a significant difference, F; 35, = 37.38, P < 0.001;
again, neither the trial effect, F'; 5,0 = 1.24, P = 0.310, nor
the interaction were significant, F 5 ;¢ = 1.29, P = 0.299.
The mean dwell times in the first, middle, and last steady-state
segments were: 9 = 6, 167 = 81, and 5 = 3 ms, respectively
(Fig. 8B). Post hoc tests revealed that the segment effect was
due to long dwell times in the middle segment (P < 0.001); the
values in the first and last segments were not significantly
different from each other (P = 0.594). The significant increase
in dwell time at the longer periods strongly supports hypothesis
2. The absence of any trial effect indicated no evidence of
learning and no evidence that vision or its absence affected
performance, contradicting hypothesis 4.

The second analysis examined the transient segments. The
2 X 4 ANOVA detected a significant segment difference
between the ascending and descending segment, F; ; = 16.22,
P = 0.004, and a trial main effect, F'5 ,, = 5.08, P = 0.007, but
no interaction, F3,, = 2.63, P = 0.073. The segment effect
indicated that dwell times in the segment where period in-

J Neurophysiol » doi:10.1152/jn.00643.2016 - www.jn.org

LT0Z ‘'z 1snbny uo 9%2°Z£'022°0T Aq /B10"ABojoisAyd-uly/:dny woly pspeojumod



http://jn.physiology.org/

76 LIMITATIONS OF DYNAMIC PRIMITIVES

A Subject 1
100 -

>

=

Q2

c

[e]

£

t .

@©

I
90 1 1 1

0 20 40 60

B All Subjects
100 -
99 +

>

=

L

c

]

£

b

©

I

Cycle Number
Fig. 7. Harmonicity as a function of cycle number. A: data for all 4 trials of 1
exemplary subject. The shaded areas mark the segments with constant periods.
B: mean values of all subjects and trials. Means are calculated across 9 subjects
and 4 trials and for both movements within a cycle. The gray shading depicts
the standard error of the mean.

creased (movements slowed) were significantly longer than in
the segment where period decreased: increasing, 99 * 45 ms;
decreasing, 71 = 36 ms (Fig. 8B). This difference may be
indicative of the higher demands to synchronize with
lengthening compared with shortening periods, as already
seen in the periods above, indicating potential hysteresis.
Post hoc analyses of the trial main effect revealed that dwell
time in trial 1 was significantly longer than in trial 4 (P =
0.048). The significant trial effect indicated that some fa-
miliarization with the task may have occurred. However, the
trial effect could not be attributed to the presence or absence
of vision. Dwell times in frials 1 to 4 were 101 * 48,
90 = 45, 85 =48, and 63 = 30 ms, respectively. Dwell
time tended to decrease between trials 1 and 2 as vision was
removed (not significant, P = 0.32, uncorrected), but dwell
time also tended to decrease further between trials 2 and 3
as vision was restored (not significant, P = 0.64, uncor-
rected). The absence of a significant effect of vision is
strong evidence against hypothesis 4.

Submovements

The unambiguous evidence of increasing dwell time as move-
ments slowed motivated the finer-grained decomposition of the
speed profiles into submovements. Using the method described
above, each half-cycle (forth or back) was fit to a set of submove-
ments that could temporally overlap. Compared with the half-
sinusoid fit used to assess harmonicity, submovements yielded a
better fit to the measured speed profiles for movements of all
durations as they could overlap in time (Fig. 6B).

Number of submovements. As mentioned in the introduction,
we hypothesized that oscillatory primitives are only available
with a limited range of periods and that sufficiently slow
rhythmic movements become replaced by submovements. A
corollary of hypothesis 2 is that the number of submovements
should increase systematically with movement duration. Figure
9 shows the distribution of the number of submovements per
movement (half cycle) plotted against cycle number. To con-
struct the histogram, data were parsed into bins of five non-
overlapping cycles and the numbers of submovements pooled
across trials and subjects. The number of submovements per
movement was lowest in the first 10 and last 10 cycles,
showing typically two submovements. As the cycle time in-
creased, the number gradually increased, typically reaching
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Fig. 8. Dwell time as a function of cycle number. A: data for all 4 trials of 1
exemplary subject. The shaded areas mark the segments with constant cycle
intervals. B: mean values of all subjects and trials. Means are calculated across
9 subjects and 4 trials and for both movements within a cycle. The gray
shading depicts the standard error of the mean.
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Fig. 9. Distribution of the number of submovements per movement as a
function of cycle number for all subjects and all trials. Cycles were parsed into
bins of 5. Colors denote the frequency of the number of submovements per
movement in each bin (legend on the right margin).

five at the longest cycle interval. This pattern was reversed as
the cycle time decreased.

Hypothesis 3 predicts that the accelerating and decelerating
segments would differ in the transition between execution as a
primitive oscillation and as a sequence of submovements. To
examine whether the number of submovements per movement
changed asymmetrically in the decelerating and accelerating
segments, the slope and GoF of a linear regression of submove-
ments per movement onto cycle number was compared be-
tween the two transient sections. The 2 (segment) X 4 (trial)
ANOVA failed to show any significant effects for GoF: trial:
Fs,5, =115, P = 0.351; segment: F; g = 0.53, P = 0.486;
interaction: F5,, = 0.09, P = 0.963. Similarly, there were no
differences for slope: segment: F; g = 0.81, P = 0.394; trial:
F354 = 0.90, P = 0.458; interaction: F5,, = 0.14, P = 0.935.
These data do not support hypothesis 3. The absence of any
trial effect indicated no evidence of learning and no evidence
that vision or its absence affected performance, contradicting
hypothesis 4.

The remaining analyses aimed to test the reliability of our
submovement extraction algorithm. Reliably extracting over-
lapping submovements from a continuous kinematic record is
a notoriously hard problem. For example, the common practice
of examining zero-crossings of progressively higher deriva-
tives is fundamentally misleading. Even aside from the prac-
tical difficulty of obtaining reliable higher-order derivatives
from kinematic data, a composition of two single-peaked speed
profiles may yield a composite speed profile with one, two, or
three speed peaks, hence one to five zero-crossings in the
acceleration profile (Rohrer and Hogan 2003). The algorithm
we used was designed to avoid these problems and was shown
to identify submovements reliably, even in the presence of
substantial noise (Rohrer and Hogan 2003). The analysis de-
scribed next attempted to test whether the submovement se-
quences we derived might be an artifact of the extraction
algorithm or, instead, reflected the structure underlying motor
behavior.

Submovement duration. For practical reasons, the submove-
ment extraction algorithm assumed that the submovement
parameters duration, latency, and skewness lay within a limited

range of values (see METHODS). Mathematically, any smooth
data history may be fit with arbitrary precision by a sum of
basis functions, provided those functions have finite support
(they are zero except for a finite range of their argument). As
a result, a sufficiently large number of sufficiently short sub-
movements could have fit our observed data with any specified
degree of precision. In that case, we might expect the number
of extracted submovements to cluster at the upper end of the
allowable range and their durations to cluster at the shorter end
of their allowable range.

In fact, they did not. Pooling data for all subjects and trials,
the number of extracted submovements per movement was
much less than 10, the maximum allowable (Fig. 9). Figure
10A shows histograms of submovement durations plotted
against cycle number. Each histogram was computed for a
group of five nonoverlapping cycles. In all cases, submove-
ment durations were clustered away from the bounding values
permitted by the submovement extraction algorithm. More-
over, this pattern became more pronounced for slower
movements.

Latency. Pooling data for all subjects and trials, Fig. 10B
shows histograms of submovement latencies plotted against
cycle number. As above, each histogram was computed for a
bin of five cycles. In all cases, submovement latencies were
clustered away from zero, consistent with a minimum “refrac-
tory period” between submovements. Again, this pattern be-
came more pronounced for slower movements. Note that
latency is also nonzero for continuous oscillatory movements
in the initial and final segments, highlighting that latency is
defined at the submovement level and is independent of and
distinct from dwell time.

Skewness. Pooling data for all subjects and trials, Fig. 10C
shows histograms of submovement skewness plotted against
cycle number. As above, each histogram was computed for a
group of five nonoverlapping cycles. In all cases, submove-
ment skewness was clustered around zero, far from the bound-
ing values permitted by the submovement extraction algorithm.
We conclude that our submovement extraction algorithm per-
formed acceptably. Especially for the slower movements with
lower harmonicity, it did not generate submovement sequences
that were not present in the structure of the experimental data.
This is confirmed by the excellent fit evident in Fig. 6B.

DISCUSSION

This study set out to explore possible limitations due to
motor control based on dynamic primitives. A previous study
showed that human subjects were unable to sustain a periodic
sequence of discrete movements (i.e., separated by dwell
times) as their pace increased; instead, they switched to oscil-
latory movements (Sternad et al. 2013). Importantly, the pace
at which the transition occurred varied with sensory informa-
tion conditions. This meant that the transition could not be
dismissed as a shortcoming of peripheral biomechanics but
reflected a limitation consistent with composing motor behav-
ior from dynamic primitives—i.e., a consequence of the “soft-
ware” architecture underlying motor control.

The study presented here complemented that previous work
by exploring movements that gradually decreased in speed.
While the previous study exposed limitations of discrete move-
ments, the present study “stressed” continuous rhythmic move-
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ments to expose the limits of oscillatory primitives. We asked
human subjects to maintain a smoothly rhythmic movement
with long periods (up to 6 s). Results showed that, despite the
auditory display of period, and with or without vision of the
cursor movement, hand speed profiles became significantly and
substantially more irregular as movements slowed (Figs. 6 and

1
75 0 0.5 puration (s)
B . s00
(%]
c
$ 250
o
o
|
0
o
%2
% 48
z .48
5 o8
Z 50 0.18
) 0.18
] 1.5
75 0.5
0 Latency ()
C
4
2
75 - 0
-4 2 Skewness (o)

Fig. 10. Histograms of submovement parameters duration, latency, and skew-
ness as a function of cycle number for all subjects and all trials. Cycles were
parsed into bins of 5. Black lines denote the faster initial and final steady-state
segments; blue line denotes the slow steady-state segment in the middle of
each trial; gray lines denote transient segments. A: histogram of duration
against cycle number. Red numbers denote the most frequent duration for each
histogram. Note that all histograms are clustered away from their short-
duration limits and that this pattern is more pronounced as movements slow. B:
histogram of latency against cycle number. Red numbers denote the most
frequent latency for each histogram. Note that all histograms are clustered
away from their short-latency limits and that this pattern is more pronounced
as movements slow. C: histogram of skewness against cycle number. Unlike
duration and latency, skewness is insensitive to cycle number.

7). In addition, despite explicit instructions to the contrary,
epochs in which the hand dwelt at zero velocity were observed.
In the first and last steady-state segments, dwell times were
within the temporal resolution of our measurements, but they
became significantly and substantially more prominent as
movements slowed (Fig. 8). Together, these observations sup-
port hypothesis 1, that smoothness decreases as period in-
creases. Instead, as predicted by hypothesis 2, as movements
slowed they started to exhibit dwell times, a definitive delim-
iter of discrete movements.

It is important to note that the above conclusions are based
on standard analyses of movement kinematics and are com-
pletely independent of our method of identifying submove-
ments. Our finer-grained submovement analysis provided fur-
ther strong support for hypothesis 2, showing that the number
of submovements increased systematically with longer cycle
times. However, we found only weak evidence of an asymme-
try in the decelerating and accelerating transitions between
execution by oscillations and by sequences of submovements,
as hypothesis 3 predicted. The only support for hypothesis 3
was found in the pattern of dwell times: the ascending segment
showed a faster increase and longer dwell times than the
descending segment, irrespective of practice. The presence or
absence of vision had no effect on any of our observations;
hypothesis 4 was not supported.

The observed inability to produce slow, smooth oscillatory
movements exposes a limitation due to the composition of
motor behavior from dynamic primitives—i.e., a consequence
of the software architecture underlying motor control. Smooth
rhythmic movements are replaced by a sequence of submove-
ments, when moving sufficiently slowly. Before interpreting
the data furthermore, we first discuss and rule out possible
artifacts that might provide alternative explanations.

Possible Artifacts

Measurement noise. Could the observed kinematic irregu-
larity be an artifact of our experimental measurement proce-
dures? Kinematic data were obtained as a sequence of positions
sampled at 100 Hz. Velocity was computed based on zero-lag
smoothing of the position, numerical differentiation with a
half-sample delay, and further zero-lag smoothing. Although
this reduced measurement artifact, due to the finite resolution
of the position measurement and the finite sampling interval,
velocity measurements at slow speeds necessarily had rela-
tively higher variability than at high speeds—i.e., the signal-
to-noise ratio was poorer. Nevertheless, this cannot account for
our observations.

An upper bound on the magnitude of measurement noise
was obtained from our submovement extraction procedure.
That analysis fit progressively more submovements to the
velocity profiles until adding more submovements did not
improve the fit; that is, the algorithm stopped when the GoF
improvement achieved by adding another submovement fell
below 1% (see METHODS). However, the root-mean-square de-
viation between the resulting submovement sequence and the
experimental velocity profile could exceed 1% of the experi-
mental data’s RMS variation. In fact, it was found to range
between ~1 and 2%, the latter at longer periods, consistent with
the expected poorer signal-to-noise ratio. As measurement
noise was the same for all subjects, this indicated the worst-
case noise magnitude. Measurement noise of this strength—
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1-2% of signal magnitude— cannot account for the kinematic
irregularity we observed (see Fig. 6).

Friction. Subjects lightly rested their forearm on the table
while making movements. Although we provided a low-fric-
tion skid (made of Teflon) to minimize static and dynamic
friction, we did not completely eliminate friction. Dry friction
is commonly characterized by static friction (when velocity is
zero) that is larger than kinetic (sliding) friction, a phenomenon
colloquially known as “stiction.” This might conceivably have
induced dwell periods at the extremes of movement (due to
“sticking” when velocity declined to zero). Moreover, this
might have become more prominent during slower movements,
when the forces required to overcome inertia and generate
movement would have been smaller, hence more time may
have been required to exceed the threshold of static friction.

Two observations argue against this account. The foremost
is that the kinematic irregularities we observed occurred
throughout the movements (see Fig. 6). Kinematic irregulari-
ties due to stiction would have been confined to the regions
where velocity was zero—i.e., clustered at the movement
extremes. In fact, the deviations from smooth rhythmicity
occurred throughout. They were well approximated as a se-
quence of submovements with onset times distributed through-
out the movement duration, not clustered at the ends.

In addition, to assess the role of friction empirically, we
performed an ad hoc experiment in which subjects were asked
to perform similar oscillatory arm movements at a constant
period between two visually presented targets under two con-
trasting conditions: /) with the hand sliding over a horizontal
surface similar to this experiment; or 2) with the hand and
forearm unsupported, i.e., moving “in air.” Arm positions in
3D were measured at 200-Hz sampling rate and differentiated
as described above to compute velocity. There was no mea-
sureable difference between the two conditions. We conclude
that friction cannot account for our observations.

Motor noise. Could the observed kinematic irregularity be
an artifact of force production in the peripheral neuromuscular
system? All torques required to accelerate and decelerate limb
inertia (including Coriolis and centrifugal accelerations) are
proportional to the inverse square of movement time. As times
increased from 1 to 6 s, the required inertial forces decreased
by a factor of 36 while the irregularity increased. Therefore, the
complex interaction torques required to produce the approxi-
mately straight hand paths we observed cannot account for
speed fluctuations that increased as movements slowed.

Because muscles may need to overcome the apparent vis-
cosity due to muscle force-velocity characteristics (or other
phenomena), muscle force may not decline as rapidly as the
forces required to overcome inertia. Nevertheless, mechanical
physics dictates that slower motions require lower muscle
forces. Could the fluctuations we observed be due to “signal-
dependent noise,” which has been proposed to account for
several aspects of motor behavior (Harris and Wolpert 1998;
Jones et al. 2002)? Signal-dependent noise is usually assumed
to be proportional (or at least monotonically related) to the
magnitude of the underlying signal. If so, motor noise in force
production should decline as force declines. This is opposed to
our observation that kinematic irregularity increased as move-
ments slowed and mechanically required forces decreased.
Further evidence is provided by a recent simulation that
showed that signal-dependent noise is far too small to cause the

large kinematic irregularities observed in upper limb move-
ments (Salmond et al. 2016). As demonstrated in other work,
signal-dependent noise may not be as prominent as is often
assumed (Sternad et al. 2011).

But might sufficiently low muscle forces exhibit fluctuations
that reflect the action of individual motor units? In contrast to
the pattern usually assumed for signal-dependent noise, force
fluctuations due to the actions of individual motor units would
yield “noise” magnitudes that increased as the underlying
(mean) force declined. However, Slifkin and Newell (1999)
showed that, though the noise-to-signal ratio of force produc-
tion actually increased for sufficiently small forces, the mag-
nitude of the “noise” in force decreased monotonically with
mean force (see Fig. 3 in Slifkin and Newell (1999). Therefore,
noise in muscle force cannot account for our observation that
kinematic fluctuations increased as movements slowed.

Finally, compelling evidence against attributing the ob-
served behavior to motor noise came from the observed dwell
times, which increased with movement duration and became
most pronounced in the slowest movements. This effect is
consistent with previous results (Adam and Paas 1996; van der
Wel et al. 2010). The probability that noise of magnitude
sufficient to account for the observed speed fluctuations (Fig.
6) could also yield epochs with speed below 3% of peak for
significant durations (Fig. 8) is essentially zero. These dwell
times are an unambiguous signature of discrete movements.

Relation to Prior Work

As our observations cannot be dismissed by these possible
artifacts, they support our hypothesis that sufficiently slow
motions cannot be executed by oscillatory primitives—i.e., the
parameters of an oscillatory dynamic primitive are limited. Our
data suggest that these slower movements are executed using a
sequence of submovements that we propose are the dynamic
primitives underlying discrete movements. These findings ex-
tend several other studies that showed that repetitive move-
ments, if performed sufficiently slowly, transition to a se-
quence of discrete movements or movements composed of
overlapping submovements (Adam and Paas 1996; Doeringer
and Hogan 1998a, 1998b; Hogan et al. 1999; van der Wel et al.
2010). Previous reports of submovements in slow discrete
movements are found in studies of persons recovering after
cerebral vascular accident (stroke) (Dipietro et al. 2012; Krebs
et al. 1999; Rohrer et al. 2002, 2004). However, in those
studies, it is unclear whether the presence of submovements in
slow discrete movements is a consequence of neural injury or
a fundamental feature of motor control.

Intermittent feedback control. It has been proposed that
submovements arise from an intermittent feedback control
process. The notion of submovements due to intermittent
feedback control has a long history. As early as 1899, Wood-
worth investigated line-drawing tasks and reported irregulari-
ties just before acquiring a target. He interpreted this as the
signature of a corrective, or “current control” phase that re-
duced errors in a series of discrete steps, distinct from an
“initial transport” or ballistic phase (Woodworth 1899). For
discrete aiming movements to small targets, irregularities have
been reported in the velocity trace, in contrast to the smooth
bell-shaped velocity profile shown for simple reaching move-
ments (compare Meyer et al. 1988, 1990 with Atkeson and
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Hollerbach 1985; Flash and Hogan 1985). Movements to
smaller targets that required higher precision evoked greater
irregularity, consistent with a greater number of corrective
submovements (Milner 1992; Milner and Ijaz 1990).

Craik (1947) observed that when participants tracked a
pseudo-randomly moving target, their response included direc-
tional changes at frequencies other than the target frequency.
These were termed “intermittency” (Vince 1948). Intermit-
tency has been demonstrated in many visuomotor tracking
tasks, testing completely predictable to pseudo-random targets
with various display properties (Miall et al. 1993; Poulton
1974; Vince 1948; Weir et al. 1989; Wickens 1984). A number
of possible explanations for intermittency were proposed, in-
cluding an internal clock controlling the timing of the actor’s
corrective responses (Bekey 1962), a physiological refractory
period delaying the production of the next response (Smith
1967; Vince 1948) and an error dead zone around the target
within which no adjustments are detected or deemed necessary
(Wolpert et al. 1992). Central to all these interpretations is the
view that humans are intermittent feedback controllers (Craik
1947; Miall et al. 1993; Neilson et al. 1988a, 1988b; O’Dwyer
and Neilson 1998; Poulton 1974; Weir et al. 1989).

The present study showed that these explanations, however
appealing, are not sufficient to account for our results. Hypoth-
esis 4 was not supported: the increase of kinematic fluctuations
(decrease of harmonicity) as movements slowed was neither
eliminated nor even significantly reduced by removing visual
feedback. To some extent this is not surprising: our experi-
mental protocol was deliberately designed without continuous
tracking and with minimal accuracy requirements, thereby
reducing the need for visually evoked correction. Previous
results also support our observations: though Miall et al. (1993)
reported that removal of visual feedback reduced intermit-
tency, removing visual feedback had no effect on an oscillatory
phase-space drawing task (Doeringer and Hogan 1998a,
1998b). Of course, alternative sources of feedback (e.g., pro-
prioceptive) were still available, but the performance of an
intermittent feedback controller should improve for slower
movements (with more time to acquire, process, and respond to
sensory information). We observed the opposite: harmonicity
declined and dwell periods increased in slower movements.

Relation between kinematic variables and submovement
parameters. It is important to stress that our extraction of
submovements was completely independent of our quantifica-
tion of kinematic variables dwell time, harmonicity, and cycle
period. Nevertheless, comparison of the pattern of the kine-
matic variables (cycle time, dwell time, and harmonicity) with
those of the submovement parameters (number, duration, and
latency) revealed very similar changes with cycle number
(compare Figs. 5, 7, and 8 with Figs. 9 and 10). Some more
specific correlations suggest interesting speculations about the
underlying processes.

In principle, a movement could exhibit nonzero dwell time
with no submovements; conversely, a movement could be
composed of submovements, yet exhibit no dwell time. In fact,
both measures clearly increased with movement duration (Figs.
8 and 9), but the correlation between dwell times and number
of submovements was modest, ranging between R = 0.10 and
R = 0.55 over nine subjects. To gain further insight, we tested
how strongly the two measures were correlated with movement
time by calculating Spearman’s rank correlation within single

participants. While both were significantly correlated with
movement time (P < 0.0005), dwell time was significantly
(P = 0.02) less correlated than the number of submovements
(mean of individual correlation coefficients 0.58 vs. 0.75). This
was most likely due to the highly skewed distribution of dwell
times toward lower values, including zero dwell times even
within the slowest movements. The covariation of two inde-
pendent measures (dwell time and submovements) indicates
that both were consequences of a common underlying neural
process.

In effect, submovement extraction provides a finer-grained
analysis of that underlying process; the number of submove-
ments may increase before dwell time deviates from zero.
Closer examination of submovement parameters is informa-
tive: One remarkable observation was that, while movement
time and submovement durations were strongly correlated
(R = 0.93), submovement duration did not increase beyond
~1 s. Whereas our finding speaks to a limitation of oscillatory
primitives—they cannot support arbitrarily slow periodic be-
havior—this suggests a similar limitation on “discrete” primi-
tives: they, too, cannot be arbitrarily slow. As movement time
increased, submovement duration increased, but only up to a
point; thereafter, additional submovements were recruited,
consistent with our observation that submovement number
increased with movement duration.

Dynamic primitives and nonlinear dynamics. Oscillations
due to nonlinear dynamics with stable limit-cycle behavior
were discussed in much previous work on rhythmic manual
coordination (Kay et al. 1987; Schoner and Kelso 1988).
Specifically, Russell and Sternad (2001) studied a task in
which subjects tracked a periodic visual signal with effectors
prepared to have different natural frequencies. The observed
phase leads and lags varied with the mismatch between target
period and the effector’s natural frequency, consistent with phase
and frequency locking of coupled oscillators. Unlike in Russell
and Sternad (2001), the metronome period in the present study
changed continuously and therefore required adjustments at every
cycle. If phase locking underlay the behavior, it would require
corrections when mismatch with the metronome was observed.
That would be most likely at the ends of movements, which is not
consistent with our findings of “irregularities” throughout. Hence,
phase locking with adjustments is a less likely candidate for our
observations.

An alternative is that primitive oscillations and submove-
ments emerge from the nonlinear dynamics of neural networks;
this is one reason we refer to them as dynamic primitives.
Nonlinear dynamic systems exhibit distinctive interactions. If
control were based on feedback and/or feedforward control
(e.g., based on an internal model of the neuromuscular periph-
ery), it should be possible to superimpose or merge discrete
and rhythmic movements in any task-specified way, subject
only to the shortcomings of the biomechanical system. Sternad
and colleagues examined movements that combined oscilla-
tions and submovements in unimanual and bimanual, single-
joint and multijoint tasks. Experimentally probing superposi-
tion of oscillations and submovements at random phasing
revealed that transient displacements preferentially occurred in
limited phase windows of ongoing rhythmic movements (Ster-
nad et al. 2000, 2002; Sternad and Dean 2003; Wei et al. 2003).
Without nonlinear dynamics, discrete and rhythmic move-
ments could be superimposed arbitrarily. The fact that they
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could not strongly supports a nonlinear dynamic origin of these
primitive actions.

These interactions between discrete and rhythmic movements
are reminiscent of interactions identified in rhythm generation of
mammalian limbs. Going beyond pure rhythm generation, dis-
crete perturbations such as sensory stimulation have induced
phase resetting. To account for this observation, Rybak and
colleagues proposed a two-layered central pattern generator struc-
ture consisting of a pattern-formation unit and a rhythm-generat-
ing unit (Rybak et al. 2006). Connected via interneurons, the
two-layered model could simulate a more varied pattern of ob-
servations, such as phase-resetting and nonresetting perturbations.

Several alternative neural architectures underlying motor
primitives are considered in Giszter 2015, e.g., Fig. 3 of that
paper). While the rhythm generator of Rybak et al. (2006) is
clearly associated with a rhythmic dynamic primitive, it is less
clear how a submovement primitive might emerge from this
architecture. The “burst generators” proposed by Higglund et
al. (2013) may be the origin of submovements such as we
report here. An alternative to the dynamic submovements that
we define is the notion of time-varying synergies introduced by
d’Avella et al. (2003). Time-varying synergies combine tem-
poral structure with the pattern of muscle recruitment. How-
ever, a study in frogs showed that time-varying synergies could
not account for limb trajectories, whereas premotor drive
pulses could (Kargo and Giszter 2008). The latter are consis-
tent with our view of submovements as dynamic primitives.
However, whether the evolution of the human nervous system
has preserved these structures found in mouse and frog remains
for future study.

Another distinctive feature of nonlinear interactions is an
asymmetry usually termed hysteresis. In the context of the
experiments reported here, hysteresis would manifest as a
different transition between oscillatory motion and a sequence
of submovements when periods increased and decreased. Our
companion study on accelerating discrete movements showed
at most weak evidence of hysteresis (Sternad et al. 2013). The
present study showed some evidence of hysteresis, although
only in one variable, dwell time. Although there was no
evidence of an abrupt switch (typical of hysteretic phenomena
in dynamical systems), dwell time increased significantly faster
than it decreased in the two transition segments. However, the
submovement composition of the discrete movements did not
reflect a similar asymmetry. Another possible explanation for
the asymmetry in the dwell times is that for lengthening
intervals the current performance does not receive an error
signal until after the movement is finished. In contrast, for
shortening intervals the metronome sound or error signal ar-
rives before the end of the movement, allowing adjustment in
the immediate next cycle. Given these considerations, we
refrain from placing much emphasis on the hysteresis result.

These observations (limited evidence of hysteresis, nor an
abrupt switch) may have been due to the fact that this task—
synchronizing with a slowly decelerating transiently periodic
auditory signal—appears to have been quite difficult. Even
though the biomechanical demands of this task were trivial
(move slowly between two large targets a short distance apart),
there was no evidence that harmonicity increased with practice.
However, we did find evidence that the dwell times in the
transient segments on the fourth trial were significantly shorter
than in the first trial. This suggests that the demands of the task

(synchronize with a slowly decelerating or accelerating audi-
tory signal) may have been challenging. The concomitant
variability (see Figs. 5, 7, and 8) may have masked more
visible evidence of hysteresis. Further work is required to
resolve this question.

Implications and Conclusions

The importance of limitations. Limitations such as we report
here strongly support the biological plausibility of our core
hypothesis that motor control is based on dynamic primitives.
Without limitations, this idea might be dismissed as experi-
mentally indistinguishable from mathematical “curve fitting.”
In the context of the experiments reported here, any (almost-)
periodic behavior such as we observed during the steady-state
segments could in principle be reconstructed with arbitrary
precision as a sum of components with (almost-) periodic
behaviors; this is the essence of Fourier analysis. However,
such curve-fitting reconstruction would be equally competent
for all periods. Our observation that it was not (see Figs. 6 and
7) shows that our data exhibits structure that cannot be dis-
missed as simple curve fitting. Moreover, the appearance of
submovement sequences in slow movements is fully consistent
with our proposal that motor control is based on dynamic
primitives (Hogan and Sternad 2012).

Our observations strongly support hypothesis I, that slow
rhythmic movements cannot be executed by oscillatory dy-
namic primitives. A crude estimate of the longest period of an
oscillatory motor primitive may be obtained by examining the
variation of the number of fitted submovements with metro-
nome interval. Referring to Fig. 9, the number of submove-
ments begins to increase at a period of ~3 s. This is similar to
the reported limit on the time-horizon estimated in time per-
ception and human behavior, which is also close to 3 s (Fraisse
1984; Schleidt et al. 1987). This raises the intriguing possibility
that the dynamic primitives underlying action may also play a
role in perception. For example, the increasing dwell times
could be the result of an inaccurate estimation of the requested
cycle time. Further work is required to assess this speculation.

Our observations are also consistent with the proposal that
there may be a refractory period between adjacent submove-
ments. Although our algorithm to identify submovements per-
mitted two or more of them to start simultaneously, in fact they
did not; the distribution of latencies was clustered well away
from zero (Fig. 10B). However, it is unclear whether any
refractory period is a “hard-wired” limitation or a feature of the
software responsible for initiating submovements. Our data
appear to suggest the latter, but further work is required.

Why dynamic primitives? The main finding of this study and
the companion study (Sternad et al. 2013) is that upper ex-
tremity motor control exhibits limitations due to its software,
the organization of motor behavior as a composition of dy-
namic primitives. In particular, slow motions are difficult. This
appears to be a drawback of control via dynamic primitives; is
it offset by some advantage? The most obvious benefit is
simplification. Specifying an action as a sequence of submove-
ments, limited in duration, rather than as a continuous and
extended time course of neural activity, dramatically reduces
the dimensions of the control problem and places fewer de-
mands on a limited capacity for neural information processing
and transmission. This is the main reason why we believe that
control based on dynamic primitives may resolve the “paradox
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of human dexterity”’; it suggests how humans perform so much
better than robots despite vastly inferior hardware and
wetware.

APPENDIX

We define a submovement as an attractor that describes a smooth
sigmoidal transition of a variable from one value to another with a
stereotyped time profile. For limb position, the variable is a vector in
some coordinate frame, e.g., hand position in visually relevant coor-
dinates, X = [x,,X,,...x, ]". Each coordinate’s speed profile has the same
shape which is nonzero for a finite duration d = e — b, where b is the
time when the submovement begins and e is the time it ends, i.e., it
has finite support:

where 7; is the peak speed of element j; o(r) > 0 iff b <t < e and
o(t) = 0ift = b or e = t. The speed profile has only one peak: there
is only one point 7,E(b,e) at which d(z,) = 0, and at that point,

ali) = 1.
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