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1. Introduetlon 

The work presented here is part of an effort to develop a unified approach to the control of a system 

which may interact dynamically with its environment. The principal perceived problem is that when a 

controlled system interacts with its environment, its performance may be drastically altered. Even if the 

controlled system is stable in isolation, when it interacts with dynamic objects in its environment that 

stability may be jeopardised. This problem is particularly actue for a manipulator. Manipulation has been 

succintly described as a series of collisions between the manipulator and the objects in its environment [71. 

Every time a manipulator grasps or releases an object, the dynamic behaviour of the physical system 

interfaced to the controller undergoes an abrupt change, and this change may have a profound eCfect on the 

manipulator's behaviour. 

The approach discussed here is based on physical systems theory, and has been developed from an 

investigation of the strategies used to control the primate upper extremities, [2, 11, 15, 16, 211 and the 

application of similar strategies to the control of robot manipulators 112, 13, 14, 17, 181. It may be 

sufficiently general to have application for controlling other complex biological systems. The ultimate goal 

oC this work is to develop a class oC controlled systems which could be dynamically coupled to or isolated 

from a wide variety of environments without serious degradation of performance and stability. This paper 

will show that the preservation of stability in the face of changing environmental dynamics can be achieved 

through a control strategy which ensures that a manipUlator's behaviour is compatible with the physical 

behaviour of its environment. 

2. Phyaleal Equlvalenee 

The basis of the approach is the concept of physical equivalence 1121. Any controlled system will consist 

of "hardware" components (e.g. sensors, actuators and structures) combined with controlling "software" (e.g. 

a neural network, brain or computer). A unified approach to the analysis and design of both the controller 

and the physical hardware can be developed by postulating that, taken together, the hardware and software 

is still a physical system in the same sense that the hardware alone is. 

The value of this conjecture is its implication that no controller need be considered unless it results in a 

behaviour of the controlled system ,which can be described as an equivalent physical system. Several well 

developed formalisms exist for describing physical systems, the most notable being Paynter's bond graphs 

124, 271, which have been applied successfully to a broader class of systems than any other formalism. The 

postulate of physical equivalence justifies using the same technique to describe control systems. This 

provides a powerful and intuitive way of thinking about control action in physical terms, and may provide 

an eCfective vehicle Cor promoting communication between control system theorists and those working in 

other disciplines. 

However, if this conjecture is to be of anything more than philosophical interest, it is necessary to c1ariCy 

the definition oC a physical system. What (if anything) distinguishes the differential equations used to model 
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a physical system Crom any other general system oC diCCerential equations! No complete deCinition is 

attempted here, but some key issues are considered. One oC the important difCerences lies in the structure oC 

the equations. 

3. Structure 

What is meant by structure and why does it matter! Consider the diCCerential equations Cor a general 

second-order linear system driven by a single input. 

or 

Xl' XJI: state variables 

u: input variable 

011' olJ1' oJil' oJlJl' b1• bl!: system parameters 

X =Ax + Bu 

(1) 

(2) 

One important property oC a system is its controllability, and this system is controllable iC and only if 

the matrix [BIABI is of full rank. 

One way oC imposing structure on these equations is by restricting the values of some system 

parameters, and this can have a profound eCfect on system properties. Suppose, for example, that the 

parameters 012 and b1 are identical to zero. 

(3) 

(4) 

The resulting system is structurally uncontrollable; it is always uncontrollable for all values of the 

remaining system parameters. 

(5) 

If the differen tial equations are a mathematical model of a physical system, then that system will 

determine their structure. For example, dynamic interaction between a spring and a mass subject to 

external forces can be modelled by a second-order linear system oC state equations. In this case the state 

variables can be given a physical meaning,and the equations may be written in phase-variable Corm in which 

one state variable is the displacement of the mass and the other its velocity. 

Xl: displacement of mass 

Xi velocity of mass 

k: spring constant 

m: mass 

F'. external force 

(6) 

This system is structurally controllable. Aside from the trivial case 11m = 0 (corresponding to infinite mass) 

this system is always controllable for all values of its parameters. 
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[0 11m] det[B[ABI = det 11m 0 = -11m2 (7) 

This example shows that the structure imposed on the equations by the physical system they describe 

leads to useful restrictions on the behaviour they may exhibit. 

". Interaetlon 

Another important characteristic or physical systems is the way they may interact. Consider two 

general first-order open linear systems. Each system receives an input from and delivers an output to its 

environment. 

%1 = GI%I + blul 

YI = CI%I 

%2 = G2X2 + b2u2 

Y2 = c2x2 

U1,U,: input variables 

Y1,Y,: output variables 

c1,c,: system parameters 

(8) 

(9) 

(10) 

(ll) 

The stability of each system in isolation is determined by the eigenvalues of its system matrix, in this 

simple case a scalar. A necessary and surticient condition for assymptotic stability of each system is that its 

eigenvalue(s} be less than zero. 

(12) 

(13) 

When the two systems are coupled the output of one becomes the input to the other. 

(14) 

(15) 

The equations for the complete system are obtained by substitution. 

(16) 

A condition ror stability of the coupled system is: 

(17) 

Although the product 01 Of is greater than zero if the two systems are stable in isolation, stability of the 

coupled system requires that 01 0 2 be greater than bec1b1c2• In general, stability of individual systems in 

isolation provides no guarantee of the stability of the system formed when they are dynamically coupled. 

However, if the equations represent physical systems, then useful restrictions can be placed on the form 

or the coupling. In the rormalism or bond graphs, dynamic interactions between physical systems are 

described (essentially by generalising Kirchorf's current and voltage laws) as an instantaneous exchange or 

energy without loss or storage [24J. Instantaneous energetic interaction or power now between a physical 
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system and its environment may always be described as a product oC two variables, an eCCort (generalised 

voltage or Corce) and. a now (generalised current or velocity). 

Energetic interaction between two systems also imposes a causal constraint on the Corms oC their 

input/output relations. One system must be an impedance, accepting now (e.g. motion) input and 

producing eCCort (e.g. Corce) output whilc the other must be an admittance, accepting eCCort (e.g. Coree) input 

and producing now (e.g. motion) output. 

A mechanical spring and a Crictional element experiencing a common Coree (i.e. in series) provides an 

example oC an impedance; a mass and a Crictional element sharing a common velocity provides an example oC 

an admittance. 

%1: spring displacement 

VI: input velocity 

F1: output Coree 

k: spring constant 

b 1: viscous Criction constan t 

%e: velocity oC mass 

Fe: input Coree 

V2: output velocity 

m: mass 

be: viscous Criction constant 

(18) 

(19) 

(20) 

(21) 

Assuming the usual convention 124, 271 that power is positive into a dynamic element or system imposes 

a sign constraint on the coupling equations. For example, iC the coupling imposes a common velocity (now) 

on the two systems, then to satisCy conservation oC energy, the Corces (eCCorts) must be equal but opposite 

(Newton's third law). 

(22) 

(23) 

The equations Cor the coupled system are again obtained by substitution: 

(24) 

A condition Cor stability oC the coupled system is: 

(25) 

In this case, iC the individual systems are stable in isolation, the coupled system is also stable. 

Physically, this makes sense as the stability oC each system in isolation guarantees that its energy is always 
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decreasing. Coupling the two systems does not generate any energy, therefore the total energy of the 

coupled system, is also decreasing and the coupled system is stable. Again, a knowledge of the structure of 

the equations for a physical sy~tem permits stronger statements about its behaviour. 

5. Impedance Control 

The same concepts may usefully be applied to more complex systems. If a manipulator (biological or 

arti(icial) is to interact dynamically with its environment then it is important to understand the structure of 

the environmental dynamics and to ensure that the behaviour of the manipulator is compatible. In the vast 

majority of cases, the environment a manipulator grasps consists of inertial objects, possibly kinematically 

constrained, and may include some elastic and frictional elements. An environment of this class can be 

described using Lagrange's equations in the following rorm. 

!f vector of generalised coordinates 

L(!1,g): Lagrangian 

E;(!1.g): kinetic co-energy 

E,(gJ: potential energy 

rl!1,g): generalised frictional forces 

f.(I}: generalised input forces 

(26) 

(27) 

The coupling between manipulator and environment is typically such that a set of points on the 

manipulator have the same position and velocity as a corresponding set of points on the environmental 

object. These points define an interaction port. The position and velocity of the interaction port of the 

environment are functions of its generalised coordinates. 

f{: interaction port coordinates 

k(gJ: kinematic transformation equations 

.. r in teraction port velocities 

J (gJ: Jacobian of kinematic transformation 

(28) 

(29) 

As the transformation from generalised coordinates to interaction port coordinates is non .. energic, the 

generalised input force is related to the interaction port force through the transposed Jacobian. 

(30) 

f.: in teraction port forces 

Thus the input/output relation at the interaction port is: 

State equations: 

(31) 
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Output equations: 

(32) 

These equations show that this class of environments accepts input forces and produces output motions 

in response. Note that in these equations the vector of generalised coordinates may he of any order and the 

Jacobian need not be square. It is not, in general, possible to reformulate the equations in the dual form 

with velocity as the input and force as the output; this system is a generalised mechanical admittance. 

Accordingly, to be compatible with this class of environments, the manipulator should be a generalised 

impedance, accepting motion inputs and producing force outputs in response. As the behaviour of the 

manipulator or the demands of the task vary, that impedance may need to be modulated or controlled, and 

the approach outlined in this paper and elsewhere 112, 13, 14, 16, 17, 181 has therefore been termed 

impedance control. The principal distinguishing feature of this approach is in the objective of the controller. 

Conventional controllers are usually structured so as to make some selected time function of the system state 

variables (e.g. position, velocity, force, etc.) converge to a desired time function. For example, almost all of 

present robot control technology is focused on the problem of making the robot end effector follow a desired 

trajectory in space 123]. An impedance controller attempts the more demanding task of making the entire 

dynamic behaviour of the manipulator converge to some desired dynamic function relating input motions to 

output forces. 

The feasibility of imposing a desired impedance on a robot manipulator has been demonstrated and 

discussed in detail elsewhere 113, 17]. It has been shown that if a robot controller is designed with an 

impedance as the target behaviour some of the more prominent computational problems associated with 

robot con trol - inversion of the robot kinematic equations and computation of the inverse Jacobian in the 

vicinity of singular points - can be eliminated. However, it is not the intent of this paper to discuss 

computational techniques, as their relevance to the general problem of control of complex systems is unclear. 

For example, in a biological system, computational complexity may not be a major issue. 

Instead a more fundamental question will be addressed: Is it useful for a manipulator to assume the 

behaviour of a generalised mechanical impedance? As detailed elsewhere 112, 13, 14, 17] impedance control 

provides a unified framework for coordinating free motions, obstacle avoidance, kinematically constrained 

motions, and motions involving dynamic interaction. In this paper a further benefit of impedance control is 

considered: tbe preservation of stability in the face of changes in the dynamic environment to which a 

manipulator is coupled. One simple (but versatile) class of impedances produces an output force as a 

function of only the position and velocity of the interaction port. In the following it will be shown that if 

the manipulator has the behaviour of this general class of impedances then a sufficient condition for the 

manipulator and the environment to be stable in isolation from one another is also sufficient to guarantee 

that the coupled system formed by dynamic interaction between manipulator and environment is also stable. 

6. Preservation or Stability 

To prove this result, it is convenient to express the behaviour of the environment in generalised 

Hamiltonian form 133]. The Hamiltonian is formed by defining the generalised momentum as the velocity 

gradient of the kinetic co-energy and applying a Legendre transformation. 

P. !lJL/8ij (33) 

(34) 

(35) 

p.: generalised momentum H(l,V: Hamiltonian 
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The displacement equations are obtained from the momentum gradient of the Hamiltonian. 

(36) 

Substituting into the Lagrangian form yields the Hamiltonian form of the momentum equations. 

i!. + /JH//J~ = -fu,v + JW'E (37) 

Rearranging these into the usual causal form: 

(38) 

(39) 

This formulation has several advantages. The system equations are now in rirst order form (in contrast 

to the fundamentally second -order Lagrangian form). The structure of the Hamiltonian form of the 

equations is preserved under a very broad class of transformations known as canonical transformations 133]. 

In addition, for this system the Hamiltonian is identical to the total mechanical energy. This latter property 

can be used to assess system stability, as the total mechanical energy of a stable system may not grow 

without bound and the total mecbanical energy of an assymptotically stable system must decrease. Tbe rate 

of change of tbe mechanical energy may be expressed as follows: 

~! aH/a~ (40) 

(41) 

(42) 

In the absence of external forces, E is zero and this system is isolated. A sufficient condition for stability is 

tben: 

/fp> 0 
-p-

if > 0 

or 

Now consider a manipulator with the behaviour of the following simple class of impedances: 

KtJ: force-displacement relation 

!JI): force-velocity relation 

(43) 

(44) 

(45) 

& is the vector of desired positions of the manipulator end-effector. In the following it will be assumed to 

be a constant, corresponding to tbe maintenance of a fixed posture. Ir the function relating force to 

displacement from that posture is restricted so that it has no curl, then a potential energy function can be 

derined and this simple impedance can be expressed in the following Hamiltonian form: 
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(48) 

State equations: 

1L = }1t) (49) 

i!. = 8H/8IJ. + ~(}1t)) (50) 

Output equations: 

E. = 8H/8IJ. + ~(}1t)) (51) 

The rate or change or the system energy is: 

dH/dt =~!::" (52) 

In the absence or imposed motions, XII) is zero and this system is isolated. The rate or change or its total 

energy is then zero. Although the mechanical energy is non-increasing, no statement can be made about its 

assymptotic stability. However, one or the assumptions underlying impedance control is that the 

manipulator is at least capable or stably positioning an arbitrarily small unconstrained mass (i.e. a rigid 

body) 1121. In Hamiltonian rorm the equations or motion ror a rigid body are: 

(53) 

M: rigid body inertia tensor 

State equations: 

i!.= Bt) (54) 

1L = 8H/8E. (55) 

Output equations: 

(56) 

Note that the rate or change the energy or this system is: 

dH/dt = ErE (57) 

Thus, in common with the simple impedance above, this environmental system has the property tbat when 

the force E(t) is zero and the system is isolated, its mechanical energy is non-increasing but no statement can 

be made about its assmyptotic stability. 

When the rigid body and the impedance are coupled according to (22) and (23), the equations ror the 

resulting closed system become: 

(58) 

(59) 
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j= 8H/8l!. 

The rate of change of the total system energy is: 

dH/dt = IPH - IPH - IPB ,---,/-p -P'-'-'/ -p-

A sufficient condition for stability of the manipulator grasping the rigid body is: 

IPB > 0 
-!>-

i~ > 0 

or 

(60) 

(61) 

(62) 

(63) 

Now consider the stability of the system formed when the simple impedance described by (49), (50) and 

(51) is coupled to the more general environment described by (29), (38) and (39) through the coupling 

equations (22) and (23). In the following, subscript 1 refers to the manipulator and sUbscript 2 refers to the 

environment. The total system energy is: 

(64) 

,ts rate of change is: 

(65) 

(66) 

Elimin ating terms: 

(67) 

Using (29) and (38) the last term in (67) can be written in terms of the velocity at the interaction port. 

(68) 

Thus the surricient conditions (44) and (63) ror stability or each of the two individual systems are also 

sufficient to guarantee stability of the coupled system. Intuitively, this makes physical sense because the 

non-energic coupling does not generate energy, thus there is no mechanism through which the total 

mechanical energy could grow without bound, and the frictional elements, however small, ensure that the 

total mechanical energy always decreases. 

Summarising brieny, this discussion has shown that structuring the dynamic behaviour of a manipulator 

to be causally compatible with its environment has desirable stability properties. Note that the proor can be 

extended to more general forms or the target impedance without losing the fundamental result. 

'1. Applleatlon to a Biological Sy.tem 

Because of the generality or the physical equivalence conjecture these concepts can be applied to 

complex biological systems. How well do they describe observed behaviour? If the skeleton is modelled as a 

collection or kinematically constrained rigid bodies, then it is properly described as an admittance. 

Consequently, by the reasoning above, the neuromuscular system should behave as an impedance 1111. 
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Despite the complexity oC the thermodynamically non-conservative physiological processes underlying 

muscle contraction, under normal physiological conditions the external behaviour oC a single muscle exhibits 

a relation between Coree and displacement similar to that oC a spring [8, 26]. A growing body oC literature in 

the neurosciences [1, 2, 4, 6, 15, 21, 25, 28, 31, 32] has investigated the innuence oC this "spring-like" 

behaviour on the control oC movement. Indeed, one prominent and (to date) successCul hypothesis [5, 10,22] 

explains one oC the principal Cunctions oC the spinal renex arcs (involving muscle spindles and Golgi tendon 

organs) as preserving the spring-like behaviour oC an individual muscle in the Cace oC perturbing eCCects. 

Furthermore, the relation between force and velocity produces a behaviour similar to that of a frictional 

element [3, 9, 19, 20], and thus a single muscle does, in fact, exhibit the behaviour of an impedance of the 

form of (45). 

When muscles act in coordinated synergy, there is no guarantee that the behaviour oC the complete 

neuromuscular system will be equally simple. For example, the presence oC intermuscular spinal renex arcs 

could introduce a relation between force and displacement with non-zero curl, or a relation between Coree 

and velocity with non-zero curl [11]. Such a system would still be an impedance, but would not enjoy the 

stability properties discussed above. However, recent experiments by the author and colleagues [21] have 

invest,igated the patterns oC postural stiffness of the human upper extremity. Under steady state postural 

conditons, the anti-symmetric component oC the stiffness was negligible in comparison to the symmetric 

component oC the stiffness (see Cig. 1) verifying that under these conditions the entire neuromuscular system 
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Figure 11 While human subjects maintained a fixed posture of the upper extremity, a series of small 

(approximately 4 to 8 mm in magnitude) displacements were imposed on the hand and the steady 

state postural restoring Coree generated by the neuromuscular system in response was measured. The 

postural stiCfness matrix was estimated by multivariable regression of between 50 and 60 observations 

of the Coree vectors onto the corresponding displacement vectors. This figure shows graphical 

representations oC the symmetric (conservative or spring-like) component and the antisymmetric 

(rotational or curl) component oC the postural stiCCness. In these diagrams the two components are 

represented by drawing the force vectors obtained by multiplying each oC the imposed displacement 

vectors by the symmetric (part a) and antisymmetric (part b) components of the postural stiCCness. 

Each force vector is drawn with its tip at the tip of the corresponding displacement v!:ctor. For 

clarity, the displacement vectors are not shown. The nominal hand posture is at point P in each 

diagram. 
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of the upper extremity behaves as a simple impedance of the form of (45). Note that this behaviour requires 

that either the intermuscular renex feedback is non-existent or that it is exquisitely balanced [lli. For 

example, the gain of the renex pathways relating torque about the elbow to rotation of the shoulder must be 

identical to that relating torque about the shoulder to rotation of the elbow. These results suggest that 

despite the evident complexity of the neuromuscular system, coordinative structures in the central nervous 

system go to some lengths to preserve the simple "spring-like" behaviour of the single muscle at the level of 

the complete neuromuscular system. 

If such finely tuned coordinative structures exist, what is their purpose! The analysis presented in this 

paper offers one explanation of the benefits of imposing the behaviour of a generalised spring on the 

neuromuscular system. If the curl of the force displacement relation is zero then the stability of the isolated 

limb is guaranteed with even the most modest frictional effect. Furthermore, when the limb grasps an 

external object - even an object as complicated as another limb on another human - then if that object is 

stable in the sense described above, the stability of the coupled system is again guaranteed. 

8. Conduslon 

The approach outlined in this paper offers a new perspective on the control of complex systems such as 

the primate upper extremity. An unique feature of the approach is that it is firmly based in physical 

systems theory. One important aspect of the dynamic equations or a physical system is their structure. If a 

manipulator is to be physically compatible with its dynamic environment then its behaviour should 

complement that of the environment. In the most common case in which the environment has the 

behaviour of a generalised mechanical admittance, the manipulator must have the behaviour of a generalised 

mechanical impedance, and its controller should not attempt to impose any other behaviour. 

Imposing appropriate structure on the dynamic behaviour of a manipulator can result in superior 

stability properties. It must again be stressed that in general the stability of a dynamic system is 

jeopardised when it is coupled to a stable dynamic environment. In contrast, in this paper it was shown 

that if the Corce displacement behaviour of a manipulator has the structure of a generalised spring then the 

stability of the manipulator is preserved when it is coupled to a stable environment. Experiments to date 

indicate that the behaviour of the neuromuscular system of the human upper extremity has precisely this 

structure. 

Control of a complex system is not exclusively a matter of preserving stability; acceptable performance 

must also be achieved. A clear definition of "acceptable performance" may prove to be elusive, but one 

desirable feature is that the manipulator should have a sufficiently rich repertoire of behaviour. In that 

context it is interesting to note that the impedance control strategies discussed in this paper give the 

manipulator the behaviour of a set of coupled nonlinear oscillators. Coupled nonlinear oscillators exhibit a 

prodigious richness of behaviour, and recent research has shown that some of their behavioural peculiarities 

are qualitatively similar to aspects of coordinated human movement [29, 30). 
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