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Impedance Control: An Approach 
to Manipulation: 
Part SI—Implementation 
This three-part paper presents an approach to the control of dynamic interaction 
between a manipulator and its environment. Part I presented the theoretical 
reasoning behind impedance control. In Part II the implementation of impedance 
control is considered. A feedback control algorithm for imposing a desired car­
tesian impedance on the end-point of a nonlinear manipulator is presented. This 
algorithm completely eliminates the need to solve the "inverse kinematics problem" 
in robot motion control. The modulation of end-point impedance without using 
feedback control is also considered, and it is shown that apparently "redundant" 
actuators and degrees of freedom such vs exist in the primate musculoskeletal 
system may be used to modulate end-point impedance and may play an essential 
functional role in the control of dynamic interaction. 

Introduction 

Most successful applications of industrial robots to date 
have been based on position control, in which the robot is 
treated essentially as an isolated system. However, many 
practical tasks to be performed by an industrial robot or an 
amputee with a prosthesis fundamentally require dynamic 
interaction. The work presented in this three-part paper is an 
attempt to define a unified approach to manipulation which is 
sufficiently general to control manipulation under these 
circumstances. 

In Part I this approach was developed by starting with the 
reasonable postulate that no controller can make the 
manipulator appear to the environment as anything other 
than a physical system. An important consequence of 
dynamic interaction between two physical systems such as a 
manipulator and its environment is that one must physically 
complement the other: Along any degree of freedom, if one is 
an impedance, the other must be an admittance and vice 
versa. 

One of the difficulties of controlling manipulation stems 
from the fact that while the bulk of existing control theory 
applies to linear systems, manipulation is a fundamentally 
nonlinear problem. The familiar concepts of impedance and 
admittance are usually applied to linear systems and regarded 
as equivalent and interchangeable. As shown in Part I, for a 
nonlinear system, the distinction between the two is fun­
damental. 

Now, for almost all manipulatory tasks the environment at 
least contains inertias and kinematic constraints, physical 
systems which accept force inputs and which determine their 
motion in response and are properly described as admittances. 
When a manipulator is mechanically coupled to such an 
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environment, to ensure physical compatibility with the en­
vironmental admittance, something has to give, and the 
manipulator should assume the behavior of an impedance. 

Thus a general strategy for controlling a manipulator is to 
control its motion (as in conventional robot control) and in 
addition give it a "disturbance response" for deviations from 
that motion which has the form of an impedance. The 
dynamic interaction between manipulator and environment 
may then be modulated, regulated, and controlled by 
changing that impedance. 

This second part of the paper presents some techniques for 
controlling the impedance of a general nonlinear multiaxis 
manipulator. 

Implementation of Impedance Control 

A distinction between impedance control and the more 
conventional approaches to manipulator control is that the 
controller attempts to implement a dynamic relation between 
manipulator variables such as end-point position and force 
rather than just control these variables alone. This change in 
perspective results in a simplification of several control 
problems. 

Most of our work to date [3, 6, 13, 14, 16] has focused on 
controlling the impedance of a manipulator as seen at its 
"port of interaction" with the environment, its end effector. 
A substantial body of literature has been published on 
methods for implementing a planned end effector cartesian 
path [5, 27, 28, 32, 34, 35]. The approach is widely used in the 
control of industrial manipulators and there is some evidence 
of a comparable strategy of motion control in biological 
systems [1, 24]. Following the lead from this prior work we 
have investigated ways of presenting the environment with a 
dynamic behavior which is simple when expressed in 
workspace (e.g., Cartesian) coordinates. 
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The lowest-order term in any impedance is the static 
relation between output force and input displacement, a 
stiffness. If, in common with much of the current work on 
robot control, we assume actuators capable of generating 
commanded forces (or torques), Tact, sensors capable of 
observing actuator position (or angle), 6, and a purely 
kinematic relation (i.e., no structural elastic effects) between 
actuator position and end-point position1, X = L(6), it is 
straightforward to design a feedback control law to im­
plement in actuator coordinates a desired relation between 
end-point (interface) force, Fint, and position, X. Defining 
the desired equilibrium position for the end-point in the 
absence of environmental forces (the virtual position) as X0, a 
general form for the desired force-position relation is: 

Fint=ATXo-X]- (1) 
Compute the Jacobian, J(0): 

dX = 3(6)d6 (2) 
From the principal of virtual work: 

Tact = J'(0)Fint (3) 
The required relation in actuator coordinates is: 

Tact = J'(0)A-[Xo-L(0)] (4) 

No restriction of linearity has been placed on the relation 
K[X0 -X] , and the displacement of X from X0 need not be 
small. Note that in this equation the inverse Jacobian is not 
required. 

Inverting the kinematic equations of a manipulator to 
determine the time-history of actuator (joint) positions 
required to produce a desired time-history of end-point 
positions has been described as one of the most difficult 
problems in robot control [28]. For some manipulators (e.g., 
those with nonintersecting wrist joint axes) no explicit (closed-
form) algebraic solution may be possible. However, if K[X0 -
X] is chosen so as to make the end-point sufficiently 
stiff, then a controller which implements equation (4) will 
accomplish Cartesian end-point position control and the need 
to solve the "inverse kinematics problem" has been com­
pletely eliminated. Only the forward kinematic equations for 

'Throughout this paper, "position" will refer to both location and orien­
tation, and "force" will refer to both force and moment. 

the manipulator need be computed. This is a direct con­
sequence of the care which was taken to ensure that the 
desired behavior was compatible with the fundamental 
mechanics of manipulation and was expressed as an im­
pedance. 

Another important term in the manipulator impedance is 
the relation between force and velocity. Again, given the 
above assumptions, it is straightforward to define a feedback 
law to implement in actuator coordinates a desired relation 
between end-point force and end-point velocity such as: 

(5) 

(6) 

Fint = fi[V0-V] 
From the manipulator kinematics: 

V = J(0)a> 
The required relation in actuator coordinates is: 

Tact = J'(0)fl[Vo - J(0)co] (7) 
Again note that the relation B[\0 - V] need not be linear and 
that inversion of the Jacobian is not required. 

The dynamic behavior to be imposed on the manipulator 
should be as simple as possible, but no simpler. The foregoing 
equations take no account of the inertial, frictional, or 
gravitational dynamics of the manipulator. Under some 
circumstances this may be reasonable, but in many situations 
these effects cannot be neglected. To ensure dynamic 
feasibility the choice of the impedance to be imposed should 
be based on the dominant dynamic behavior of the 
manipulator. The choice is a tradeoff between keeping the 
complexity of the controller within manageable limits while 
ensuring that imposed behavior adequately reflects the real 
dynamic behavior of the controlled system. As a result it 
depends both on the manipulator itself and on the en­
vironment in which it operates. For example, a manipulator 
intended for underwater applications will operate in a 
predominantly viscous environment and it may be reasonable 
to ignore inertial effects. In contrast, a manipulator intended 
for operation in a free-fall orbit will encounter a 
predominantly inertial environment. For terrestrial ap­
plications (which have been the main concern of our work) 
both gravitational and inertial effects are important, and the 
dominant dynamic behavior is that of a mass driven by 
motion-dependent forces, second order in displacement along 
each degree of freedom. 
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Fig. 1 A bond graph equivalent network representation of an im­
pedance-controlled manipulator interacting with an environmental 
admittance. Each bond represents a vector of power flows along 
multiple degrees of freedom. 

When the manipulator is decoupled from its environment 
the term due to the environmental admittance disappears, and 
in principle the manipulator alone need exhibit no mass-like 
behavior. In practice, the uncoupled manipulator still has 
inertia (albeit nonlinear and configuration-dependent). This 
means that the controlled system, both with the manipulator 
coupled to and uncoupled from its environment, can be 
represented by an admittance coupled to an impedance as 
shown in Fig. 1. 

No physically realisable strategy can eliminate the inertial 
effects of a manipulator but the apparent inertia seen at the 
end effector can be modified. The approach we have taken to 
deal with inertial manipulator behavior is to "mask" the true 
nonlinear inertial dynamics of the manipulator and impose 
simpler dynamics, those of a rigid body. Most manipulatory 
tasks are fundamentally described in relative coordinates, that 
is, in terms of displacements and rotations with respect to a 
workpiece, tool or fixture whose location in the workspace is 
not known in advance with certainty. As a result, task 
planning and execution will be simplified if the end-point 
inertial behavior is modified to be that of a rigid body with an 
inertia tensor which remains invariant under translation and 
rotation of the coordinate axes. This is achieved if: 
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This is the inertia tensor of a rigid body such as a cube of 
uniform density. This inertia tensor eliminates the angular 
velocity product terms in the Euler equations for the motion 
of a rigid body [8] and ensures that if the system is at rest the 
applied force and the resulting acceleration vectors are 
colinear. 

To represent the dominant second-order behavior of the 
manipulator the noninertial interface forces are assumed to 
depend only on displacement, velocity and time: 

Fint = F(X,V)-MdV/dt (9) 

If the noninertial behavior to be imposed is nodic, it may be 
written in terms of a displacement from a commanded (time-
varying) position X0: 

Fint = F(X0-X,Y0-\)-MdV/dt (10) 

Although there may be cases in which coupled nonlinear 
viscoelastic behavior is useful, for simplicity the position- and 
velocity-dependent terms may be separated: 

Fint = K[X0-X]+B[V0-V]~MdY/dt (11) 

All of the parameters in this expression are implicitly assumed 
to be functions of the set of control commands (c) and of 
time. 

This set of assumptions defines a target behavior which 
includes inertial effects. The first two terms are the position-
and velocity-dependent impedances of equations (1) and (5). 
If the environment is a simple rigid body acted on by un­
predictable (or merely unpredicted) forces, its dynamic 
equations are: 

MedV/dt = Fext + ¥mt (12) 

and the coupled equations of motion for the complete system 
of figure 1 are: 

(Me+M)dV/dt=K[X0-X]+B[\0 - V] +Fext (13) 

Note that in this case both the coupled and uncoupled 
equations for the system have the same second-order form. 

To implement the target behavior of equation (11), one 
approach we have used is to express the desired Cartesian 
coordinate impedance in actuator coordinates (the kinematic 
transformations between actuator coordinates and end-point 
coordinates provides sufficient information to do this) and 
then use a model of the manipulator dynamics to derive the 
required controller equations. Assuming that the kinematic, 
inertial, gravitational, and frictional effects provide an 
adequate model of the manipulator dynamics as follows: 

I(8)dco/dt + C(6,a>)+V(co) + S(d) = Tact+Tint (14) 

an expression for the required actuator torque as a function of 
actuator position and velocity and end-point force can be 
derived by straightforward substitution (see Appendix I): 

Tact = 1(6)3 ~,(6)M^lK[X0-L(6)]+S(6) 

+ 1(6)5',(d)M-iB[\0-3(d)u] + V(o) 

+ I(ff)J~1(e)M-iFmt-Jt(9)Fmt 

- 1(6)3 ~1(6)G(6,u) + C(6,w) (15) 

This equation expresses the required behavior to be 
provided by the controller as a nonlinear impedance in ac­
tuator coordinates. It may be viewed as a nonlinear feedback 
law relating actuator torques to observations of actuator 
position, velocity and interface force. The input (command) 
variables are the desired cartesian position (and velocity) and 
the terms of the desired (possibly nonlinear) cartesian 
dynamic behavior characterized by M, /?[•] and AT*]. 

The feasibility of this approach to cartesian impedance 
control has been investigated [6,16] by implementing this 
nonlinear control law to impose cartesian end-point dynamics 
on a servo-controlled, planar, two-link mechanism (similar to 
the nonlinear linkage in a SCARA2 robot). A simple analysis 
estimating the computation required to implement this 
controller on a six-degree-of-freedom manipulator indicated 
that the computational burden is comparable to "exact" 
approaches to generating forward-path manipulator com­
mands such as the recursive LaGrangian [17] and Newton-
Euler [21] methods or the configuration space method [18]. 

If the interface forces and torques in equations (11) and (15) 
are eliminated and the position- and velocity-dependent terms 
reduced to linear diagonal forms, this implementation of 
impedance control resembles the resolved acceleration 
method [22]. However, unlike the resolved acceleration 
method, the impedance control algorithm presented above is 
based on desired end-point behaviour which may be chosen 
rationally using approaches such as the optimisation 
technique presented in Part III. Furthermore, the impedance 
control algorithm includes terms for coping with external 
"disturbances." Without the external "disturbance" terms 
(which have no counterpart in the resolved acceleration 
algorithm) the manipulator is not capable of. controlled 

2 Selective Compliance Assembly Robot Arm [23]. 
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mechanical interaction with its environment. Note also that 
the above approach to defining the controller equations is not 
restricted to commanded linear behavior and can be applied 
equally well to achieve the more general coupled nonlinear 
behavior of equation (9). 

It is not claimed that the above algorithm is the only way to 
achieve a desired end-point impedance. It is presented here 
only to demonstrate that a control law capable of modulating 
the end-point impedance of a manipulator may be for­
mulated. The controller of equation (15) was designed by a 
technique which is similar to pole-placement methods [31] in 
that the desired behaviour and a model of the actual 
behaviour of the manipulator were compared algebraically to 
derive the controller equations. In common with most ap­
proaches to manipulator control the approach is based on a 
model which ignored many aspects of real manipulator 
performance, particularly the dynamics of the actuators and 
the transmission system. Furthermore, like many other ap­
proaches the method assumes that the Jacobian is invertible. 

This technique is, of course, only one possible approach to 
the design of a controller for implementing a desired cartesian 
impedance, and, if one may draw from linear systems design 
experience without overstretching the analogy to pole-
placements methods, it is not even likely to be the best. Other 
approaches to controller design such as the model-referenced 
adaptive control method [9] will probably be useful. 

Impedance Modulation Without Feedback 

Modulation of end-point impedance using feedback 
strategies is not the only way to control the dynamic behavior 
of a manipulator, nor is it always the best. This is particularly 
evident in a biological system. One of the most distinctive 
features of the primate neural control system is the 
unavoidable delay associated with neural transmission. The 
shortest time for information to get from peripheral sensors 
(e.g., in the muscles or skin) in the human arm to the higher 
levels of the central nervous system (e.g., the cortex) and back 
to the actuators of the arm is 70 milliseconds, and loop 
transmission delays of 100 to 150 milliseconds are typical [29]. 
This problem is further exacerbated if significant com­
putation is required (the response time to a visual stimulus is 
somewhere between 200 and 250 milliseconds). The ef­
fectiveness of feedback control in the presence of a delay of 
this magnitude is severely limited, particularly in dealing with 
tasks involving dynamic interaction. Yet primates excel at 
controlling dynamic interactions; How do they do that? 

One alternative to feedback which we have explored is the 
use of redundancies: "excess" actuators or "excess" skeletal 
degrees of freedom. From a purely kinematic standpoint the 
neuromuscular system is multiply redundant. For example, 
the kinematic chain connecting the wrist joint to the chest 
(clavicle, scapula, humerus, radius and ulna) has considerably 
more degrees of freedom than those required to specify the 
position (and orientation) of the hand in cartesian coor­
dinates. These skeletal redundancies can serve to provide a 
measure of control over the inertial component of the end-
point dynamics. 

In considering the apparent inertial behaviour of the end-
point it is useful to remember that an inertia is fundamentally 
an admittance; flow (velocity) is determined as a response to 
impressed effort (force). Dealing with kinematic redundancy 
is considerably simplified if the constitutive equations are 
written as a relation determining generalised velocity, a>, (e.g., 
the velocities of the manipulator joints) as a function of 
generalized momentum, h: 

o>=Y(6)h (16) 

Y{6) is the inverse of the more commonly used inertia tensor, 
and to help distinguish the two, the term "mobility" is 

(a ) 

3 
(b) (c) (d) 

Fig. 2 A schematic representation of the influence of kinematic 
redundancies on the mobility (inverse effective mass) of the end-point 
of a planar linkage. The ellipsoid of gyration associated with the 
mobility tensor is shown in (a). The eigenvalues of the mobility tensor 
are inversely proportional to the effective mass in the direction of the 
corresponding eigenvectors and the square root of their ratio deter­
mines the ratio of the major and minor axes of the ellipsoid, which are 
colinear with the eigenvectors. For a planar, three-member linkage with 
links of uniform density and cross section and lengths in the ratio 1: 2: 
3 the effect on the ellipsoid of gyration of changing the linkage con­
figuration for a fixed position of the end-point is shown in (b), (c), and 
<d>. 

suggested. The elements of the mobility tensor in general will 
depend on the manipulator configuration. 

At any given configuration, the kinematic transformations 
between joint angles and end-point coordinates define not 
only the relations between generalized displacements, flows 
and efforts in the two coordinate frames, (see equations (2), 
(3), and (6)) they also define the relation between the 
generalised momenta in joint coordinates, h, and end-point 
coordinates, p, through the Jacobian (see Appendix II): 

h = J'(0)p (17) 

Consequently, the mobility tensor in end-point coordinates 
W{6) is related to the mobility in joint coordinates Y{&) as 
follows: 

W(0) = 3(0)Y{0)3<{8) 

(18) 

(19) 

The physical meaning of the end-point mobility tensor is that 
if the system is at rest (zero velocity) then a force vector 
applied to the end-point causes an acceleration vector (not 
necessarily co-linear with the applied force) which is obtained 
by premultiplying the force vector by the mobility tensor (see 
Appendix II). 

Note that the Jacobian in the above equation need not be 
square, and that the end-point mobility is configuration 
dependent. As a result, redundant degrees of freedom can be 
used to modulate the end-point mobility. Consider the 
simplified three-link model of the primate upper extremity 
(arm, forearm and hand, each considered to be rigid bodies, 
linked by simple pin-joints) moving in a plane as shown in 
Fig. 2. For simplicity, assume the links are rods of uniform 
density with lengths in the ratio of 1: 2: 3. 

Any real linkage such as the skeleton is a generalised kinetic 
energy storage system. Kinetic energy is always a quadratic 
form in momentum: 

Ek=lAWY(6)\\ (20) 

Thus the locus of deviations of the generalised momentum 
from zero for which the kinetic energy is constant is an 
ellipsoid, the "ellipsoid of gyration" [33]. It graphically 
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Table 1 Variation of apparent end-point mass with linkage 
configuration 

Distal link 
orientation 
(degrees) 

90 
135 
180 

Effective mass 
X\ -direction 

(kgm) 
0.322 
0.568 
1.824 

Effective mass 
X2 -direction 

(kgm) 
1.823 
0.568 
0.323 

Link Lengths: 1, 2, 3 meters; Linear density: I kgm/m 

represents the directional properties of the mobility tensor. 
The eigenvalues of the symmetric mobility tensor define the 
size and shape and the eigenvectors the orientation of the 
ellipsoid of gyration (see Appendix II). An ellipsoid of 
gyration can be associated with the mobility tensor in any 
coordinate frame, e.g., end-point coordinates (see Fig. 2(a)). 

Figures 2(b) through 2(d) show the profound effect on the 
ellipsoid of gyration of changes in arm configuration while 
keeping the position of the end-point fixed. The inertial 
resistance to a force applied radially inward toward the 
shoulder (vertically downward in the figure) changes by 
almost a factor of six as the hand rotates through ninety 
degrees (see Table 1). In the configuration of Fig. 2(d) the 
applied force has to accelerate all three links; in that of Fig. 
2(b) it primarily has to accelerate the distal link. Clearly, 
kinematic redundancies in a linkage provide a vehicle for 
changing the way the end-point will react to external 
disturbances without recourse to feedback strategies. 

As an aside, an alternative representation of inertial 
behavior is via the ellipsoid of inertia [33]. Asada [4] has 
suggested its use as a tool for designing robot mechanisms. 
However, the ellipsoid of gyration is the more fundamental 
representation; it is readily obtained even when the Jacobian 
of the linkage is noninvertible. Also, while the matrix Y(8) 
may never have zero eigenvalues, (assuming real links with 
nonzero mass) the matrix W(d) may, because of the 
kinematics of the linkage. If the inertial behavior of the tip is 
written in the conventional (impedance) form: 

p = M(0)V (21) 

there exist locations in the workspace for which the eigen­
values of the tensor M(6) become infinite. Thus the end-point 
inertia tensor can not be defined for some linkage con­
figurations. On the other hand the worst the eigenvalues of 
W(6) will do is go to zero, which is easier to deal with com­
putationally. Again, a reminder of the fact that the difference 
between impedance and admittance is fundamental. 

Impedance Modulation Using Actuator Redundancies 
It is also possible to modulate the position- and velocity-

dependent components of end-point impedance without 
feedback by exploiting the intrinsic properties of the ac­
tuators, and again apparent redundancies are useful. 
Although a muscle is by no means thermodynamically 
conservative, it exhibits a static relation between force and 
length (for any given fixed level of neural input) similar to 
that of a mechanical spring, i.e., one which permits the 
definition of a potential function analogous to elastic energy.3 

Muscle force also exhibits a dependence on velocity similar to 
a mechanical damper. It has been shown that the mechanical 
impedance of a single muscle may be modulated by neural 
commands both in the presence and in the absence of neural 
feedback [7, 11, 12, 25, 26]. Simultaneously activating two or 
more muscles which oppose each other across a joint is one 
strategy which permits impedance to be modulated in­
dependent of joint torque [15, 20]. (This is what happens, for 

Curiously, the force/length behaviour of most muscles is such that the co-
energy integral is not defined and thus no compliance form is definable [29]: 
Muscles are impedances, not admittances. 

(b) 

WORKSPACE 

Fig. 3 A schematic representation of the influence of the polyarticular 
muscles of the primate upper extremity on the range of end-point 
stiffnesses which may be achieved without recourse to feedback 
strategies by simultaneous activation of opposing muscles. The 
ellipsoid associated with the symmetric differential stiffness tensor is 
shown in (a). The eigenvalues of the stiffness tensor are proportional to 
the stiffness in the direction of the corresponding eigenvectors and the 
square root of their ratio determines the ratio of the major and minor 
axes of the ellipsoid, which are colinear with the eigenvectors. 
Assuming the upper extremity may be modelled as a two-member 
linkage with equal link lengths, without biarticuiar muscles, a 
necessary condition to achieve an end-point stiffness with equal 
eigenvalues (hence a circular ellipsoid) is only satisfied at the point p 
on the workspace boundary as shown in (b). With biarticuiar muscles 
acting at equal moment arms about each joint an end-point stiffness 
with equal eigenvalues and a circular ellipsoid may be achieved 
throughout the region R shown in (c). 

example, when one tenses the muscles of the arm without 
moving; the impedance of the limb increases.) 

There are also considerably more skeletal muscles than 
joints, even beyond the antagonist pairing required to permit 
unidirectional muscle force to produce bidirectional joint 
torques. For example, the torque flexing the elbow joint (one 
of the simpler joints in the primate upper extremity) is 
generated by brachialis, brachioradialis, biceps capitus brevis, 
and biceps capitus longus. Does this complexity serve any 
purpose? If the control of end-point impedance of the limb 
without feedback is considered it will seen that these apparent 
actuator redundancies may have a functional role to play [13]. 

Consider the simplified two-link model of the primate 
upper limb (forearm and hand treated as a single rigid body, 
pin-jointed to the upper arm) moving in a horizontal plane as 
shown in Fig. 3. In the absence of feedback, the static 
component of the total end-point impedance will solely be due 
to the spring-like properties of the individual muscles. For 
each muscle, a potential function may be defined, and the 
combined effect of multiple muscles is to define a total 
potential function (which could be determined by adding the 
potential functions of the individual muscles). The total 
potential at any point is invariant under coordinate trans­
formations and the total potential function may be expressed 
in any coordinate system by direct substitution. 

Now, for simplicity, assume that the relations between 
muscle force and length and muscle length and joint rotation 
result in a linear torque/angle relation for each muscle. First 
consider the monoarticular (single-joint) muscles which 
generate torques about only a single joint: their combined 
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effect is to define a diagonal stiffness tensor in relative 
angular coordinates: 

(22) 

Each of the terms Ks and Ke may vary. For example, the 
stiffness about the human elbow can vary from about 1 
Nm/rad. to more than 200 Nm/rad [20, 36]. 

When this stiffness tensor is expressed in end-point 
coordinates, because of the distortion due to the nonor-
thogonality of the kinematic transformations the end-point 
stiffness will no longer be diagonal, but the range of end-point 
stiffnesses which could be achieved without feedback using 
monoarticular muscles to change Ks and Ke is quite restricted. 
This is readily seen in the shape of the potential function 
corresponding to this stiffness. For small displacements the 
potential function is a quadratic form and its isopotential 
contours are ellipsoids which graphically represent the 
directional character of the stiffness tensor (see Fig. 3(a)). 

To illustrate the nature of the problem, suppose it were 
desired to have the end-point equally stiff in all directions. 
This would correspond to a potential function with circular 
isopotentials. However, given only single joint muscles, 
throughout the useful workspace a potential function with 
circular isopotentials can not be achieved. For example, 
assuming links of equal length and joint ranges of 0 to 90 
degrees for the shoulder and 0 to 180 degrees for the elbow, a 
necessary condition to achieve circular isopotentials is only 
satisfied at one point (point p in Fig. 3(b)) on the boundary of 
the workspace (see Appendix III). This is because to specify a 
symmetric second-rank tensor such as stiffness in two 
dimensions requires three parameters and the monoarticular 
muscles provide only two. 

However, the biomechanical system abounds with 
polyarticular muscles — muscles which generate torques about 
more than one joint. The biceps and triceps muscles of the 
upper arm cross both the elbow joint and the shoulder joint 
and provide a mechanical coupling between shoulder and 
elbow rotations which radically increases the range of stiff­
nesses which may be achieved without feedback. 

For simplicity assume the same linear relation between 
muscle-generated torque and angle for both joints. Now, 
including the two-joint muscles, the stiffness tensor in relative 
joint angle coordinates will have off-diagonal terms: 

Ks + Kt Kt 

Kt Ke + Kt 
(23) 

The term Kt represents the contribution of the two-joint 
muscles and, like Ke and Ks, it may vary. Now suppose again 
that it is desired to have the end-point equally stiff in all 
directions. As a result of the two-joint muscles, as shown in 
Appendix III, a potential field with circular isopotentials 
could be achieved without feedback (by varying Ke, Ks, and 
Kt) throughout a much larger region in the workspace (region 
R in Fig. 3(c)). In effect, the two-joint muscles provide a third 
parameter with which to modulate the stiffness tensor. Note 
that this is not peculiar to the specific set of simplifying 
assumptions made above: In general, the availability of 
polyarticular muscles dramatically increases the range of end-
point impedances which could be achieved without feedback. 

The point of this discussion is to demonstrate that im­
pedance control is possible without depending on feedback 
strategies, by using to advantage the intrinsic behavior of the 
manipulator "hardware." Apparent redundancies in the 
musculoskeletal system, which are frequently seen as 
presenting a coordination problem which the biological 

controller has to solve, may in fact represent a solution to a 
problem: they may play a functional role in controlling the 
interaction between the limb and the environment during 
dynamic events sufficiently rapid to limit the effectiveness of 
feedback control. 

Summary 

In this part of the paper, techniques for implementing a 
desired impedance on a manipulator were considered. 
Feedback control algorithms for imposing Cartesian im­
pedances up to second order on a general nonlinear 
manipulator were presented. Because care was taken to ask 
for a manipulator behaviour which is compatible with the 
fundamental mechanics of manipulation, (as outlined in Part 
I) the need to solve the "inverse kinematics problem"-
generally regarded as fundamental to all robot control - was 
circumvented. 

Techniques for modulating the end-point impedance of a 
manipulator without recourse to feedback were also 
discussed. Multiple actuators and "excess" linkage degrees of 
freedom may also be used to modulate end-point impedance 
and it is suggested that the apparent redundancies in the 
primate musculoskeletal system may in fact play an essential 
functional role in controlling interactive behavior. The 
hypothesis that impedance modulation is one of the 
prominent strategies of natural movement control provides 
the motivation for a research project to develop a cyber-
netically controlled prosthesis which will give an amputee the 
ability to change its impedance at will [2]. 

The modulation of end-point impedance without feedback 
may also be important for industrial robots. Feedback loop 
transmission delays are not just a biological problem; It is 
widely recognized that computation time is one of the limiting 
factors in the design of robot controllers. It could be argued 
that as computation becomes cheaper and faster, this problem 
will disappear, but one reasonable way of describing 
manipulation is as a series of "collisions" with objects in the 
environment [10]. During a collision dynamic events take 
place extremely rapidly and any feedback controller may 
encounter difficulties. Control of dynamic interaction 
without feedback is an interesting alternative and is currently 
under investigation [19]. 

A feature of impedance control is that different controller 
actions (aimed at satisfying different task requirements) may 
be superimposed. For example, suppose that a desired end-
point position- and velocity-dependent behaviour is im­
plemented on a manipulator using a feedback control strategy 
as outlined above in equations (4) and (7). At the same time 
kinematic redundancies in the manipulator are used to 
modulate the end-point mobility. At any given end-point 
position, X, (which is determinable from the configuration, 6) 
the manipulator configuation may be chosen to best ap­
proximate a desired inertial behaviour (for example, the 
mobility normal to a kinematic constraint surface may be 
maximised). This configuration may then be used in the 
feedback law which implements the position- and velocity-
dependent behaviour. As the equations never require in­
version of the Jacobian, they can be applied to a manipulator 
with kinematic redundancies. Note that this approach to end-
point control in the presence of kinematic redundancies is 
significantly different from the use of a generalised 
pseudoinverse [35]. 

Part III of this paper will discuss the application of im­
pedance control. 
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A P P E N D I X I 

A Nonlinear Feedback Law for Impedance Control 
Assume that the desired end-point behavior to be imposed 

on the manipulator is given by: 

MdV/dt-B[Y0 - V] -ATX0 - X ] =Fint 

Assume that an adequate model of the manipulator dynamics 
is: 

I(6)du/dt + C(0,to) + K(co) + S(0) = Tact + Tint 

In this equation, 1(6) is the configuration-dependent inertia 
tensor for the manipulator, C(0,to) are the inertial coupling 
terms (due to centrifugal and coriolis accelerations), K(u) 
includes any velocity-dependent forces (e.g., frictional) and 
S(8) includes any static configuration-dependent forces (e.g., 
gravitational). Any actuator dynamics have been neglected. 
The actuator forces (or torques) Tact are assumed to be the 
control input to the manipulator. 

The equation for the desired behavior may be regarded as a 
specification of the desired end-point acceleration which is to 
result from an external force impressed on the manipulator 
admittance. 

orV/c// = M - , ^ [ X 0 - X ] + M ~ 1 B [ V 0 - V ] + M - 1 F i n t 

The corresponding acceleration in actuator coordinates is 
obtained by differentiating the kinematic transformations. 

dX/dt = 3(d)du/dt + G(6,o>) 

where 

G(6,u>) = [d{3(0)<a}/d6]oi 

du/dt = J ~' (6) [dV/dt - G(6, co)] 

Each of the impedance terms in the desired end-point 
behavior may be expressed in actuator coordinates using the 
kinematic transformations 

K[Xo-X]=K[Xo-L(0)] 

fi[Vo-V]=fl[Vo-J<0)«] 
For the purposes of controller design, each of these terms may 
be regarded as a component of a desired feedback law relating 
the control input Tact to the variables 6, co and Fint, which are 

14/Vol. 107, MARCH 1985 Transactions of the ASME 

Downloaded From: http://dynamicsystems.asmedigitalcollection.asme.org/ on 09/08/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



assumed to be accessible measurements. The complete control 
law is obtained by substitution. 

Tact = 1(6)3-[(0)M-'K[XO-L(0)]+S(0) (position terms) 

+ 1(0)3 -' (6)M-' B[V0 - J(0)co] + K(co) (velocity terms) 

+ 1(6)3 - ' (6)M-' Fint - J'(0)Fint (force terms) 

- 1(0)3 - ' (0)G(8,w) + C(0,co) (inertial coupling terms) 

Note that although this equation does require the inverse 
Jacobian, it does not require inversion of the kinematic 
equations. Only the forward kinematic equations need be 
computed. This will be important for those manipulators for 
which no explicit algebraic (closed form) solution to the in­
verse kinematic equations exists. 

A P P E N D I X II 

Generalized Inertial Systems and the Mobility Tensor 

Any mechanical linkage is a generalized inertial system. The 
defining property of an inertial system is its ability to store 
kinetic energy, defined as the integral of (generalized) velocity 
with respect to (generalized) momentum [8]. At any con­
figuration defined by the generalized coordinates the kinetic 
energy is a quadratic form in (generalized) momentum. 

Ek = 'Ah' Y(6)h 

From Hamilton's equations [30], the (generalized) velocity is 
the momentum gradient of the kinetic energy. 

H(h,6) = Ek(h,6) 

d0/dt = u=VhH=Y(0)h 

Kinetic energy is commonly confused with kinetic coenergy. 
The two are not identical and are related by a Legendre 
transform [8]. 

Ek* = co' h - Ek = co' y ' co - Vi co1 Y-' YY-' co 

Ek* = Vi co' Y-i(0)o>= !/2co'/(0)<o 

At any configuration kinetic coenergy is a quadratic form in 
(generalized) velocity and its velocity gradient is the 
(generalized) momentum [8]. 

h = I(6)oi 

For a generalized inertial system, Y is a symmetric, twice-
contravariant tensor. To distinguish it from its inverse, the 
inertia tensor /, (symmetric, twice-covariant) Y will be termed 
the mobility tensor. 

A knowledge of the geometric relation between coordinate 
frames is sufficient to transform any tensor from one frame 
to another. As the joint angles are a set of generalized 
coordinates, for any configuration of the linkage of Fig. 2 the 
end-point coordinates are related to the joint angles via the 
kinematic transformations. 

X = L(0) 

Differentiating these transformations yields the relation 
between velocities (at any given configuration). 

dX/dt = V = J(0)co 

3(6) in these equations is the configuration-dependent 
Jacobian. As the coordinate transformation does not store, 
dissipate or generate energy, incremental changes in energy 
are the same in all coordinate frames. This yields the relation 
between forces in each coordinate frame. 

dEp = Td6 = F'dX = F' 3(6)d6 

At any given configuration 

T = 3'(0)F 

The same approach yields the relation between the 
momenta in each coordinate frame. 

dEk = dh' co = dp' V = dpJ(6)u 

At any given configuration 

h = J'(0)p 

These relations may be used to express the mobility in end-
point coordinates. 

v = j c o = j y j ' p 

Denoting the end-point mobility by W(0) 

W(0) = 3Y3< 

V = W(6)p 

The physical meaning of the mobility tensor is that if the 
system is at rest an applied force will produce an acceleration 
equal to the force vector premultiplied by the mobility tensor. 
At rest, d6/dt = 0 and hence: 

d\/dt = 3u/dt 

du/dt= Ydh/dt 

From the generalized Hamiltonian [30]: 

dh/dt = T- V0H 

At rest, h = 0 henceH(h,0) = ££ = 0 and V , H = 0 . Thus: 

dh/dt = T 

d\/dt = 3Y3'F=W¥ 

As the mobility tensor is symmetric it may be diagonalized 
by rotating the coordinate axes to coincide with its eigen­
vectors. A force applied in the direction of an eigenvector 
(when the system is at rest) results in an acceleration in the 
same direction equal to the applied force multiplied by the 
corresponding eigenvalue. The eigenvalues represent the 
inverse of the apparent mass or inertia seen by the applied 
force or torque. 

Because the kinetic energy is a quadratic form in 
momentum, it may be represented graphically by an ellipsoid 
(see Fig. 2), the ellipsoid of gyration [33]. This may be 
thought of as the set of all momenta which produce the same 
kinetic energy (an isokinetic contour in momentum space). 
The lengths of the principal axes of the ellipsoid of gyration 
are inversely proportional to the square roots of the eigen­
values, proportional to the square roots of the associated 
apparent mass or inertia. The long direction of the ellipsoid of 
Fig. 2 is the direction of the greatest apparent inertia. 

In the general case when the system is not at rest the relation 
between applied force and resulting motion is (in general) 
nonlinear and must be written in terms of a complete set of 
state equations for the inertial system. A convenient set of 
state variables are the Hamiltonian states, generalized 
position (e.g., 0) and generalized momentum (h). The state 
and output equations are in the form of generalized ad­
mittance (see Part I) as follows. 

State equations: 

dh/dt=- V9[!/2h'y(0)h]+J'(0)F 

dd/dt= Vh[Vih'Y(0)\i\= Y(0)h 

Output equations (position and velocity): 

X=L(0) 

V=3(0)Y(6)b 

A P P E N D I X III 

Effect of Actuator Redundancy on Range of Feasible Stiff­
ness 

The differential stiffness tensor in relative joint angle 
coordinates (Pi,p2! due to the combined stiffnesses of 
monoarticular actuators, Ks, Ke and biarticular actuators Kt, 
is: 
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Ks + Kt Kt 

Kt Ke+Kt Pi 

The transformation from relative joint angle coordinates 
(Pi,p2) t 0 absolute joint angle coordinates (0i,02l is: 

1 0' 

-1 1 
Hence the stiffness tensor in absolute joint angle coordinates 
is: 

1 

1 

Ks+Kt Kt 

Kt Ke+Kt 

1 0" 

- 1 1 

" Ks + Ke -Ke 

-Ke Kt + Ke 

The differential transformation from absolute joint angle 
coordinates [8],d2] to Cartesian end-point coordinates 

dX{ 

dX2 

dX = 

-Li sin 0! 

Li cos 61 

Jdd 

-L2 sin 62 

L2 cos d2 __ 

~d6x 

dd2 

To achieve an isotropic end-point stiffness (for which the 
corresponding potential function will have circular 
isopotentials) its eigenvalues must be equal. For simplicity 
assume each eigenvalue is unity. 

Kx=\ 
The corresponding stiffness tensor in absolute angle coor­
dinates is: 

Ko= J'AjtJ = J 'J 

Ko-
L, L2 cos (82 — 0,) 

L, L2 cos (d2 -&\) 

V 
To achieve an isotropic end-point stiffness it is necessary for 
the actual joint coordinate stiffness to equal the desired joint 
coordinate stiffness. Assuming L, =L2 = 1 it can be seen that 
in the absence of biarticular actuators, i.e., Kt = 0, this 
condition is not satisfied except at: 

02-0, =180° 

point p in figure 3b. In contrast, given bi-articular actuators, 
i.e., Kt^Q, isotropic stiffness can be achieved throughout the 
region R in Fig. 3(c) defined by: 

9 O ° < 0 , - 0 , <180° 
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