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Impedance Control: An Approach 
to Manipulation: 
Part IN—Applications 
This three-part paper presents a unified approach to the control of a manipulator 
applicable to free motions, kinematically constrained motions, and dynamic in­
teraction between the manipulator and its environment. In Part I the approach was 
developed from a consideration of the fundamental mechanics of manipulation. 
Part II presented techniques for implementing a desired manipulator impedance. In 
Part III a technique for choosing the impedance appropriate to a given application 
using optimization theory is presented. Based on a simplified analysis it is shown 
that if the task objective is to tradeoff interface forces and motion errors, the 
manipulator impedance should be proportional to the environmental admittance. 
An application of impedance control to unconstrained motion is presented. The 
superposition properties of nonlinear impedances are used to develop a real-time 
feedback control algorithm which permits a manipulator to avoid unpredictably 
moving objects without explicit path planning. 

Introduction 

The work presented in this three-part paper is an attempt to 
define an approach to manipulation which is sufficiently 
general to be applied both to the control of free motions and 
to the control of dynamic interaction between a manipulator 
and its environment. In Part I it was shown from a con­
sideration of the mechanics of interaction that a general 
strategy is to control the motion of the manipulator and in 
addition control its dynamic behavior; controlling a vector 
quantity such as force or position alone is inadequate. To be 
compatible with the mechanics of an environment which in 
general will contain constrained inertial objects, the 
manipulator should exhibit the behavior of an impedance. It 
was also shown in Part I that for a broad class of nonlinear 
manipulators (basically those capable of positioning an 
unconstrained inertial object) the relation between the 
commanded motions and the commanded dynamic behavior 
could be represented by a generalized Norton equivalent 
network. 

In Part II the implementation of a desired manipulator 
impedance either using a feedback strategy or using the in­
trinsic mechanics of the manipulator was discussed. We now 
turn to a consideration of a method for choosing an ap­
propriate manipulator impedance. In this, the Norton 
equivalent network representation will prove to be of some 
value. We will also show how the superposition property of 
impedances leads to a simplification of a problem in 
manipulator control. 

Choosing an Appropriate Impedance 

The manipulator impedance appropriate for a given 
situation depends on the task to be performed. In most 
manipulatory tasks there is a tradeoff to be made between 
allowable interface forces and allowable deviations from 
desired motions. Whether it has been rationally chosen or not, 
the manipulator impedance specifies a relation between in­
terface forces and imposed motions. If the tradeoff implicit in 
the task is expressed as a performance index to be maximized 
or minimized which is a function of the interface forces and 
motions then the impedance appropriate for that task may be 
determined using optimization theory [10], 

Because a general class of nonlinear manipulators can be 
represented by a generalized Norton equivalent network as 
shown in Fig. 1, considerable insight into manipulation can be 
gained by considering analogous (but simpler) systems with 
the same Norton network structure. Assume a manipulator 
interacts with a passive environment (no active energy source 
terms). For simplicity, consider a single degree-of-freedom 
and assume that both the manipulator impedance and the 
environmental admittance are simple linear dissipative 
elements. This simplified linear system has the same basic 
structure as a more general multiple degree-of-freedom 
nonlinear manipulator interacting with an environmental 
admittance. The following equations relate the port variables: 

YF (1) 
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F = Z(V0-V) (2) 

V = YZV0/(l + YZ) (3) 

F = ZV0/{\ + YZ) (4) 

Now assume that one task is to minimize the transmission of 
power into the environmental admittance. Express this as an 
objective function to be optimized: 
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Fig. 1 A bond-graph equivalent network representation of an im­
pedance-controlled manipulator interacting with an environmental 
admittance. Each bond represents a vector of power flows along 
multiple degrees of freedom. The bond graph for the manipulator is a 
generalized Norton equivalent network. 

Objective: maximize P=FV where P= power transmitted 

P = F Z 2 K 0
2 / ( l + yZ)2 (5) 

Maximizing the power transmitted requires the commanded 
motion V0 to be maximized, or the commanded impedance Z 
to be maximized. Maximizing with respect to the admittance 
Yyields an equality condition: 

ZY= 1 (6) 

or 
Zmanipulator = Zenvironment (7) 

The first two conditions state essentially that the machine 
should operate on the boundaries of its performance en­
velope. The third condition states that (after the first two 
conditions have been satisfied) the machine and environment 
impedances should be matched. This is a familiar result and is 
a design rule of great versatility, applicable in any situation in 
which a source is to impart maximum power to a load. Its 
applicability to robotic transport tasks has recently been 
shown [19]. 

For manipulation, another common task is to minimize 
deviations from desired motions while simultaneously 
minimizing interface forces. Assume this objective may be 
expressed as follows: 

Objective: minimize Q=p(V0 - V)2 + F2 (8) 

p is a weighting coefficient specifying an allowable tradeoff 
between interface forces and motion errors. Rewriting the 
objective using equations (3) and (4): 

Q = {p + Z2)Va
2/(\ + YZ)2 (9) 

Minimizing this objective requires the commanded motion V0 

to be minimized or the environmental admittance Y to be 

maximized, two physically reasonable conditions. Minimizing 
with respect to the commanded impedance yields the 
following equality condition: 

Z-pY=0 

Zmanipulator =p ^environment 

(10) 

(11) 

This condition may be considered as a designer's "rule of 
thumb" for manipulation, analogous to the impedance 
matching rule applicable to power transmission: "Make the 
manipulator impedance proportional to the environmental 
admittance." If the environment is unyielding (low ad­
mittance), the manipulator should accommodate the en­
vironment (low impedance); if the environment offers little 
resistance (high admittance), the manipulator may impose 
motion upon it (high impedance). 

Although these results were obtained using an extreme 
simplification of the mechanics of manipulation, this simple 
static analysis captures the essence of the interaction between 
manipulator and environment, and yields an intuitively 
satisfying result: that manipulation (at least insofar as it is 
modeled by the cost function of equation (8)) and power 
transmission are fundamentally conflicting task require­
ments. In view of the fact that a manipulator must be ver­
satile - it may be called upon to transmit power in one phase 
of a working cycle (e.g., transport a workpiece as fast as 
possible) and manipulate at another (e.g., assemble the 
workpiece to another) - a controllable mechanical impedance 
is imperative. 

The simple analysis presented above demonstrates that the 
tradeoff implicit in the specification of most manipulatory 
tasks may be mapped directly onto a statement about the 
manipulator impedance. That analysis was purely static: 
algebraic equations related the port variables, not differential 
equations. In the following a method is presented for 
determining an appropriate impedance in a simple dynamic 
case. 

Assume that the end-point inertial behavior of the 
manipulator has been modified to be that of a rigid body 
using (for example) the technique outlined in Part II. The 
nodic (noninertial) interface forces can be represented by a 
generalized Norton equivalent network as shown in Fig. 1 and 
are assumed to depend only on the displacement (and its rate 
of change) from a commanded time-varying (virtual) 
position, with the displacement- and velocity-dependent terms 
assumed to be separable. The dynamic equations for the 
interaction port behavior are: 

Fmt = K[X0-X]+B[V0-Y]-MdV/dt (12) 

The environment will be assumed to be a rigid workpiece 
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Fig. 2 A bond graph equivalent network showing the interface bond 
assumed in the derivation of the optimal dynamic impedance 

acted on by unpredictable (or merely unpredicted) forces. Its 
dynamic equations are: 

F=[k m] 

Me dS/dt = Fext + Fint (13) 

Both the isolated manipulator (Fint = 0) and the coupled 
system have the behavior of a mass driven by motion-
dependent forces. The dynamic equations of the coupled 
system are: 

(Me + M)d\/dt = K[X0 - X] + B[\0 - V] + Fext (14) 

A further simplification is to assume that the position-
dependent terms are curl-free1. A potential function is then 
definable which is analogous to stored elastic energy. A 
similar set of assumptions permit the velocity-dependent 
terms to be described as a dissipative potential field. Finally, 
the elastic and viscous terms will be assumed linear. 

The combined inertia tensor, Me + M, for the manipulator 
and the workpiece will not in general be diagonal. However, it 
is symmetric and thus can be diagonalized by rotating the 
coordinate axes in which the task is described. The stiffness 
and viscosity tensors are to be chosen to suit the task. It will 
be assumed that the eigenvectors of the symmetric stiffness 
and viscosity tensors are colinear with those of the inertia 
tensor. Given this assumption, the general six degree-of-
freedom problem decomposes into six single degree-of-
freedom problems. Consequently, each degree of freedom 
may be dealt with separately as follows. 

The task considered will be that of maintaining a fixed 
position in the face of perturbations from the environment. 
(These might be due to excitation forces from a power tool or 
due to the process of using the tool.) To reflect the paucity of 
a-priori information about the perturbations from the en­
vironment they will be modeled as a zero-mean, Gaussian, 
purely-random process of strength S. The tradeoff implicit in 
this task will be modeled as before (equation (8)) as the 
minimization of interface forces and position errors. For 
simplicity, the interface is assumed to be between the total 
inertia (controlled manipulator plus environment) and the 
elastic and viscous elements as shown in the equivalent net­
work of Fig. 2. The inertial behavior of the manipulator has 
essentially been lumped with the admittance of the en­
vironment. 

The objective function to be minimized is: 

ioo 

o 

(F/Ftol)2 + [(X0 -X)/Xto\]2 }dt (15) 

Writing the equations for a single degree of freedom in phase 
variable form: 

' For each component of the vector force field defined by ]([•] and each 
component of X, the crossed partial derivatives are identical. 

(17) 

In these equations m refers to the combined apparent mass of 
manipulator and workpiece along this degree of freedom. 
Because of the random forcing term the objective function 
(equation (15)) is a random variable and the optimum im­
pedance is obtained by minimizing its expectation with respect 
to the parameters k and b of the manipulator impedance, 
subject to the dynamic constraints imposed by the system 
(equations (16) and (17)). The final simplifying assumption is 
to consider only steady state conditions (the method is readily 
generalized to the transient case using standard numerical 
techniques). The analysis is presented in Appendix I. Sum­
marizing the results: 

(18) 

(19) 

kopl=Fto\/Xto\ 

••^Wo ' op t — v ^K^opt171) 

In this simple case the optimum stiffness is equal to the 
ratio of force tolerance, .Ftol, to position tolerance, .¥tol. 
With no penalty on velocity errors, the optimum damping is 
such as to yield a damping ratio of 0.707. A nonzero penalty 
on velocity errors would yield a more heavily damped system. 

Viewed simply as an optimization problem, these results are 
the well-known solution to the second-order feedback 
regulator problem [13]. Their importance in this context is 
twofold: First, they demonstrate that a tradeoff modeled by 
an objective function such as equation (15) can be used to 
derive a specification of the appropriate manipulator im­
pedance. Because of the assumptions permitting decoupling 
of the end-point behavior along each degree of freedom, these 
results can be applied to each degree of freedom in turn. 
Furthermore, the analytical technique can be applied to 
nonlinear systems [6, 9]. 

Second, and more important, the results are expressed in 
terms of the mechanical behavior of the end-point regardless 
of how that behavior is achieved. Although a large number of 
(gratuitous) assumptions were made in the derivation, none of 
them are impractical and the result expresses the required 
impedance command to the manipulator in terms of readily 
available mechanical quantities associated with the task. The 
optimal impedance may be implemented by any means, 
feedback or otherwise, permitted by a given manipulator 
design. As outlined in Part II, the primate neuromuscular 
system has the capacity to change its mechanical impedance 
by simultaneous activation of opposing muscles [6, 9, 14] and 
the above analytical technique has been used to derive a 
prediction of antagonist coactivation which has been shown 
to be consistent with experimental observation [6, 9]. 

In this simple analysis the external forces were almost 
completely unmodelled. The assumption of a purely random 
process is tantamount to an assumption of complete un­
predictability. The analysis demonstrates that even with 
extremely little information about the environment, the in­
teraction between manipulator and environment may be 
controlled so as to meet task specifications. Naturally, the 
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more information about the environment that is available, the 
better one would expect the system performance to be. 
However, this suggests the tantalizing possibility that the 
impedance may be chosen to tradeoff performance against 
need for information about the environment. This is a topic 
for further research. 

Obstacle Avoidance Using Superposition of Impedances 

One useful and important consequence of the assumptions 
underlying impedance control is that if the dynamic behavior 
of the manipulator is dissected into a set of component im­
pedances, these may be reassembled by simple addition even 
when the behavior of any or all of the components is 
nonlinear. This is a direct consequence of the assumption that 
the environment is an admittance, containing at least an 
inertia. That inertia acts to sum both forces applied to it and 
impedances coupled to it. 

The additive property of impedances permits complicated 
tasks to be dealt with one piece at a time and all of the pieces 
combined by simple addition. We have taken advantage of 
this to implement a real-time feedback control law which 
drives the manipulator end-point to a target location while 
simultaneously preventing unwanted collision with un­
predictably moving objects in the manipulator's workspace 
[1-3,7,8]. 

Obstacle avoidance is generally regarded as a problem in 
position control, specifically that of planning a collision-free 
path [15]. The approach we have taken is not to plan a path, 
but to specify an impedance which produces the desired 
behavior without explicit path planning. In the following 
example, recall that although the need for the manipulator to 
have the behavior of an impedance arose from considerations 
of the mechanical interaction between a manipulator and its 
environment, cases in which the mechanical work exchanged 
is negligible (e.g., free motions) may be treated as special (or 
degenerate) instances. 

The primary difference between impedance control and the 
more conventional approaches, is that the controller attempts 
to implement a dynamic relation between manipulator 
variables such as end-point position and force rather than just 
control these variables alone. That entire relation becomes the 
command to the manipulator which may be updated as often 
as practical considerations (such as speed of computation) 
dictate. In this sense, impedance control is an augmentation 
of conventional position control. Each command to the 
manipulator specifies a position (as in conventional control) 
and in addition specifies a relation determining the ac­
celerating force to be applied to the total mechanical ad­
mittance in response to deviations of the actual position from 
the commanded position. 

If the position- and velocity-dependent terms in the 
commanded impedance are each assumed to satisfy the 
requirements for the existence of a potential function then the 
manipulator behavior is simplified. It may be thought of as 
analogous to that of a sticky marble rolling on a continuously 
deformable surface. Varying the impedance varies the shape 
of the surface and the stickiness of the marble. Target 
acquisition and obstacle avoidance may now be dealt with 
separately as follows. 

Successive target locations may be specified by means of a 
(time-varying) depression in the surface. Each single com­
mand has a position-dependent component which specifies a 
potential function which is a "valley" with its bottom at the 
target. This "valley" is depicted by a map of isopotential 
contours in Fig. 3(a). 

Conversely, given an observation of the relative location 
(with respect to the end-point) of an obstacle (or any other 
region in the workspace to be avoided) that object may be 
avoided by specifying a (time-varying) bump in the deform-
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Fig. 3 A diagram of the potential functions corresponding to the 
static component of the commanded impedances which may be used 
for (a) target acquisition (b) obstacle avoidance and (c) simultaneous 
target acquisition and obstacle avoidance. A plan view of the 
isopotential contours are shown in (a) and (b), 

able surface. Now each single command also contains a 
position-dependent component which specifies a potential 
field with an unstable equilibrium point at the location of the 
object to be avoided. The potential function is a "hill" 
centered over the obstacle (see Fig. 3(b)). 

The target-acquisition command and the obstacle-
avoidance command could be combined in a number of ways, 
but remember that the admittance sums the impedances. The 
inevitable inertial behavior of the end-point guarantees the 
superposition of the components of the impedance-controller 
action independent of the linearity of the components. It is 
always possible to command obstacle-avoidance and target-
acquisition (or any other aspect of the complete task) in­
dependently and then combine all commands by simply 
adding the impedances, in this case the corresponding 
potential fields (see Fig. 3(c)) [7, 8]. Furthermore, a number 
of obstacles and a target may be specified simultaneously. 
Each task component may be represented as a generalized 
Norton equivalent network and the combination of all the 
task components represented by the equivalent network of 
Fig. 4. 

It is important to note that the combined potential field of 
Fig. 3(c) represents a single command to the manipulator. Of 
course, neither targets nor obstacles need stay fixed in the 
workspace and a typical task will require multiple impedance 
commands Oust as locating the spot welds on an automobile 
requires multiple position commands to a conventional robot 
controller) and by updating the impedance commands 
repeatedly this approach may be used to make a manipulator 
avoid "invaders," objects which may move about the 
workspace in an unpredictable (or merely unpredicted) 
manner [2, 3]. 

The use of potential functions as commands to a robot is 
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Fig. 4 A bond graph equivalent network representation of commands 
to an Impedance-controlled manipulator specifying simultaneous 
target acquisition and avoidance of multiple obstacles. Each task 
component is represented by a generalized Norton equivalent network. 

Fig. 5 Avoidance of an unpredictably moving "invader" by a 
spherical-coordinate manipulator controlled by 8-bit, 2MHz, Z80 
microprocessors. The half circles show successive positions of the 
manipulator end-effector and the invader in the vertical plane at 100 
millisecond intervals. All of the behavior shown here is the robot's 
response to a single impedance command from the supervising 
computer, a PDP 11/44. 

similar to the approach used by Khatib and LeMaitre [12] to 
navigate a manipulator through a complicated environment. 
The distinguishing feature (and advantage) of impedance 
control is that the same controller used to deal with free 
motions can also be used to deal with real mechanical in­
teraction. The success of impedance control as a unifying 
framework for dealing with both kinematically constrained 
manipulations and free motions (including avoiding moving 
"invaders") has been demonstrated by performing both of 
these tasks in real time using a spherical coordinate 
manipulator [1, 2]. The same controller was used for both 
tasks and the algorithm was simple enough to be implemented 
using 8-bit 2 MHz microprocessors (Z-80, one for each axis) 
for the real-time controller. One example of the obstacle-
avoidance behavior achieved is shown in Fig. 5. 

As an aside, note that to be of practical value, the 
"repulsive" force fields used to implement collision 
avoidance must be nonlinear; the repulsive force must drop to 
zero for sufficiently large separations between the end-
effector and objects in the environment (see Fig. 3(b)). This is 
precisely the type of noninvertible, nonlinear force/dis­
placement behavior for which no inverse compliance form 
exists. The concept of tuning the end-point stiffness and 
damping of a manipulator has been discussed in the literature 
under the general heading of "compliance," "compliant 
motion control," "fine motion control," or "force control" 
[5, 11, 17, 18, 21-24, 28]. In most of this prior work, the 
manipulator has been given the behavior of a linear com­
pliance (a special case of an admittance). The control strategy 
presented here is considerably more general; If the end-point 
dynamic behavior is expressed as an impedance, the above 
obstacle-avoidance behavior is included as a special case; If it 
were expressed as a compliance this useful behavior would be 
excluded. In addition, the superposition property of im­
pedances coupled to an admittance would not be preserved. 

Summary and Conclusion 

This paper has presented a method for controlling a 
manipulator which may interact dynamically with its en­
vironment. The approach is solidly based on the mechanics of 
interaction and was developed in Part I from some reasonable 
physical assumptions about manipulation: that the controlled 
manipulator may be represented as an equivalent physical 
system; that manipulation is a fundamentally nonlinear 
problem (therefore impedance and admittance must be 
distinguished); and that the environment contains 

kinematically constrained inertial objects and is an ad­
mittance (therefore the manipulator must have the causality 
of an impedance). Two theoretical consequences of these 
assumptions are that a broad class of nonlinear manipulators 
may be represented by a generalization of the familiar Norton 
equivalent network, and that impedances may be superim­
posed even when they are nonlinear. 

Impedance control is an extension of conventional position 
control strategies. A time-varying position (the virtual 
position) is commanded; in addition an impedance is com­
manded, a relation (possibly dynamic, nonlinear, discon­
tinuous and time-varying) between interface forces and 
displacements from that position. This simple strategy of 
commanding a relation rather than just a position (or a 
velocity) has a profound impact on the problems of 
manipulator control. In Part II it was shown that it leads to 
the elimination of the "inverse kinematic problem" [21] (that 
of determining a joint trajectory from an end-point trajec­
tory). 

Impedance control focuses on the interaction port and 
describes the required behavior in terms of the mechanical 
properties of the manipulator (e.g., its impedance) in­
dependent of the way this behavior is to be achieved. This sets 
the stage for considering alternatives to feedback control. 
These are important for high-speed manipulation; at suf­
ficiently high frequencies the behavior of any controlled 
system is dominated by its open loop behavior. In Part II it 
was shown that multiple actuators and "excess" linkage 
degrees of freedom may be used to modulate end-point im­
pedance. It is suggested that the primate central nervous 
system uses these non-feedback strategies and that the ap­
parent redundancies in the primate musculoskeletal system 
may in fact play an essential functional role in controlling 
interactive behavior. 

In this third part of the paper it was shown that in general, 
the impedance appropriate to a given task may be deduced 
from the task objective, and a method which uses op­
timization theory to do this was presented. Although the 
examples presented were extremely simple, they retained the 
structure of the basic manipulation problem, represented by 
the generalized Norton equivalent network coupled to an 
admittance. The static example led to an instructive result: 
while power transmission requires machine impedance to 
match environmental impedance, manipulation (trading off 
movement errors against interface forces) requires a machine 
impedance proportional to environmental admittance; power 
transmission and manipulation are, in a sense, "orthogonal" 
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tasks. The dynamic example showed that the appropriate 
impedance can be expressed in terms of force and motion 
tolerances independent of the way the impedance is im­
plemented e.g., without assuming feedback control. The 
method used is general and has been applied to a nonlinear 
system. 

The concept of tuning the dynamic behavior of a 
manipulator has been explored by a number of researchers. 
However, most of this prior work considered only linear 
dynamic behavior and implemented it as an admittance (force 
in, motion out). The restriction to linearity is not necessary 
and as shown in the collision-avoidance example, nonlinear 
behavior has its uses. The restriction to admittance causality is 
not consistent with the physical constraints of interacting with 
a (possibly constrained) inertial environment. That approach 
might be justified by arguing that the environment could be 
modelled as an impedance, (e.g., a spring [18, 28]); Un­
fortunately, admittances coupled to an impedance at a 
common point (the end-effector of the robot) do not enjoy the 
superposition properties of impedances coupled to an ad­
mittance at a common point. Impedance control offers a 
significant advantage over this alternative. 

The practical value of the additive property of nonlinear 
impedances was shown in this third part of the paper by using 
it to develop a feedback control law for avoiding un­
predictably moving objects. By taking advantage of the 
superposition of impedances, target acquisition and obstacle 
avoidance could be considered separately and implemented as 
different components of a total commanded impedance which 
were combined by simple addition. This approach does not 
require explicit path planning and the control law was simple 
enough to be implemented using 8-bit MHz microprocessors. 
Note, however, that impedance control does not preclude a 
preplanning or navigational approach and the two methods 
may usefully complement one another; path-planning is 
appropriate for the predictable aspects of the environment, 
impedance control offers a method for dealing with its less 
predictable aspects. 

The choice of a realistic but appropriately simple form for 
the impedance to be imposed leads to a dramatic sim­
plification of the problems of controlling the complete system 
(manipulator and environment). Restricting attention to 
impedances with exact differentials (force fields with zero 
curl) permits the definition of potential functions for the 
position- and velocity-dependent behavior. Because of the 
simple form of the imposed dynamic equations the (elastic) 
potential function and the external forces are sufficient to 
define static stability. Asada [4] has shown how elastic fields 
may be used as the basis of an approach to planning stable 
grasp. Stable equilibrium configurations of end-effector and 
workpiece are defined by finding minima of the potential 
energy function. Gravitational forces are readily included by 
expressing them as a potential function and combining it with 
the potential function of the manipulator by simple addition. 
Note, however, that the dynamic stability of the end-effector 
is not guaranteed (that is, in principle, sustained oscillations 
are possible). To ensure dynamic stability the dissipative field 
must be chosen appropriately; the complete impedance must 
be controlled, not just the elastic behavior. 

The use of potential functions in effect maps the end-point 
dynamics into a set of static functions and the visualization, 
prediction and planning of the behavior of the complete 
system is simplified. For example, in the absence of external 
active sources the total energy of the system, kinetic plus 
potential, may never increase. This permits easy prediction of 
the maximum velocities which may result from a given set of 
commands without computing the detailed trajectories. 
Conversely, as the potential energy function is one of the 
commands, it is readily chosen so that a desired maximum 
velocity is never exceeded. If the impedance command is given 

when the system is at zero velocity (e.g., a workpiece has just 
been grasped) then it is not even necessary to know the mass 
of the grasped object. 

A feature of impedance control is that it permits a unified 
treatment of many aspects of manipulator control. The ac­
tions of both controller software and manipulator hardware 
may be described through an equivalent physical system. As a 
result powerful methods (such as bond graphs) for network 
analysis of nonlinear systems may profitably be applied. Real 
mechanical interaction may be treated in the same framework 
as free (unconstrained) motions. The impedance controller 
used to avoid unpredictably moving objects was also capable 
of coping with kinematically constrained motions [1, 2]. 
Targets to be acquired are treated in the same way as obstacles 
to be avoided as different components of a total task, where 
each component is described by a generalized Norton 
equivalent network. Path control [20, 25], rate control [26, 
27], and acceleration control [16], could be considered in a 
single framework as important special cases of impedance 
control (e.g., position control; maximize impedance; rate 
control: no static impedance component). Pure force control 
[11] (force commanded as a function of time only) could also 
be considered in the same framework by regarding it as a 
special case in which the impedance is purely elastic. A 
potential function with a constant gradient defines the 
magnitude of the commanded force, and the virtual position 
(which may go outside the workspace) defines the direction of 
the commanded force. The hybrid combination of force and 
position control in orthogonal directions [17, 23] proposed 
for dealing with pure kinematic constraints is also included 
under impedance control. 

Most important, the applicability of impedance control 
extends beyond the workless conditions imposed by free 
motions or pure kinematic constraints to include the control 
of energetic interactions such as are encountered when using a 
power tool. It promises to be particularly useful for un­
derstanding, controlling and coordinating the actions of 
mutually interacting manipulators, such as the fingers of a 
hand, the hand and the arm, or two arms. Using this ap­
proach each subsystem presents a simple behavior to the other 
subsystems; This will facilitate the prediction and control of 
the combined behavior of the entire system. 

An alternative approach to manipulator control in the 
presence of significant dynamic interaction is to change the 
structure and/or parameters of a feedback controller as the 
conditions imposed by the environment change. This would 
require the controller to monitor the environment con­
tinuously, identify changes, and adapt its own behavior 
accordingly - a far-from-trivial task. Changes in the structure 
and parameters of the environment may take place very 
rapidly (consider the transition from free motion to con­
strained motion as an object comes in contact with a surface) 
and there may not be sufficient time for the usually lengthy 
process of system identification. On the other hand, if the 
controller is structured so that the manipulator always im­
presses a force on the environment in relation to its motion 
(that is, it behaves as an impedance) there are no practical 
situations in which its behavior is inappropriate, no practical 
task has been excluded, and the need to identify the structure 
of the environment has been reduced. 

Of course, impedance control does not preclude the ap­
plication of adaptive strategies, and indeed the two ap­
proaches may complement each other, controlled impedance 
taking care of the transitions and allowing time for iden­
tification and adaptation to optimize performance. Strictly 
speaking, impedance control is a subset of parameter-
adaptive control; the primary distinctions are that the 
parameters to be modulated are expressed in terms of a 
physically meaningful quantity, mechanical impedance, and 
unlike other work on parameter adaptation, no assumption is 
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made that the implementation of the impedance will be 
through feedback control strategies. An impedance may be 
implemented in a number of ways, using to advantage the 
resources of a specific manipulator. 

Essentially, impedance control is an attempt to combine the 
control of "transport" tasks (which are the philosophical 
underpinning of conventional robot control) with the control 
of "interactive" tasks such as the use of a tools. The ultimate 
goal of this work is to understand the subleties of adaptive 
tool-use, one of the distinguishing features of primate 
behavior. Impedance control may provide the basis for un­
derstanding tool-using behavior in primates, restoring this 
capability to an amputee using an artificial limb, and im­
plementing it on an industrial robot. 
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A P P E N D I X I 

Optimal Impedance for a One-Dimensional Dynamic 
System 

The system equations in phase variable form are: 

X 0 1 

-k/m -b/m 

0 

X 

k/m 

Xn 

Mm 

.Fext 

The interface force is: F=k(X0 -X) + bV 
The objective function to be minimized is: 

Q= ["{F/Ftol)2 + [(X0 ~X)/Xto\]2 }dt 

The external force Fext is a zero-mean, Gaussian, purely 
random process of strength S. Thus: 

E[Fext(t)] = 0 E[Fext(t)Fext(t + T)\ = S5(r) 

In steady state X = X0, V = 0 thus without loss of generality 
assume X„ 0. The covariance propagation equations are: 

X2 = 2XV 

-^- —, b — k —, 
XV = V2 XV X2 

m m 

V2 = —r . 2 A ^ _ 2 — XV 
m m 

Because of the random forcing, the optimum impedance is 
obtained by minimizing the expectation of the objective 
function subject to the constraints imposed by the covariance 
propagation equations. Writing/?2 = .FtolAYtol 

E[Q]= —U (°° ( 6 2 F + 2/c bXV+(k2+p2)Y2}dt v Fto\2 Jo 
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The Pontryagin function is: 

H = tfV2 +2kbXV+(k2 +p2)Xz + 2\XXV 

+ X, K 2 -

+ X-

XV-
m m / 

\mL m m / 

The minimizing conditions are: 
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Assuming a steady-state solution exists, it may be obtained by 
setting all rates of change to zero. Manipulating the resulting 
equations yields: 

equations: 

m m 
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m m 
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