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Abstract. The dependence of muscle force on muscle 
length gives rise to a "spring-like" behavior which has 
been shown to play a role in the execution of single- 
joint posture and movement. This paper extends this 
concept and considers the influence of the apparent 
mechanical behavior of the neural, muscular and 
skeletal system on the control and coordination of 
multiple degree of freedom posture and movement. 

A rigorous definition of "spring-like" behavior is 
presented. From it a numerically quantifiable, experi- 
mental test of spring-like behavior is formulated. It is 
shown that if the steady-state force-displacement 
behavior of a limb is not spring-like, this can only be 
due to the action of inter-muscular feedback, and can 
not be due to intrinsic muscle properties. The direc- 
tional character of the spring-like behavior of a 
multiple degree of freedom system is described. The 
unique way in which synergistic coactivation of 
polyarticular muscles may modulate the directional 
properties of the spring-like behavior of a multiple 
degree of freedom system is explained. 

Dynamic aspects of postural behavior are also 
considered. The concept of mechanical impedance is 
presented as a rigorous dynamic generatisation of the 
postural stiffness of the limb. The inertial behavior of 
the system is characterised by its mobility. As with the 
stiffness or impedance, in the multiple degree of 
freedom case it has a directional property. The way in 
which the apparent kinematic redundancy of the 
musculo-skeletal system may be used to modify its 
dynamic behavior is explained. Whereas the inertial 
behavior of a single limb segment is not modifiable, it is 
shown that the apparent inertial behavior of a multiple 
degree of freedom system may be modulated by 
repositioning the joints. 

Present address: 77 Massachusetts Avenue, Building 3-449, 
Cambridge, MA 02139, USA 

A unified description of the posture and movement 
of a multi-joint system is presented by defining a 
"virtual trajectory" of equilibrium positions for the 
limb which may be specified by the neuro-muscular 
system. The way in which this approach may lead to a 
simplification of some the apparent computational 
difficulties associated with the control of multi-joint 
motion is discussed. 

Many neurophysiological studies of the control of 
posture and movement have focused on one degree of 
freedom systems such as a single muscle or a single 
joint. Although there are sound practical reasons for 
this narrow focus, it is quite difficult to develop a 
general and fundamental understanding of natural 
movement control from these studies. Single degree of 
freedom motions are rare under physiological con- 
ditions and do not provide any opportunity to study 
the complex interactions typical of normal move- 
ments. Multiple degree of freedom movements are 
more natural and provide a richer field of study. In 
producing them, the central nervous system can not 
simply string together one degree of freedom move- 
ments but must address (and solve) problems of 
coordination, timing and interaction between different 
neural, muscular and skeletal structures; hence their 
study may afford significant insight into the organisa- 
tion of movement control in the central nervous 
system. The object of this paper is to consider how 
some observations on single degree of freedom systems 
may be generalised and extended to describe the 
control and coordination of multiple degree of freedom 
posture and movement. It will be shown that in the 
multiple degree of freedom case new behavioral possi- 
bilities emerge. Some new insights into the possible 
role and function of some neuro-musculo-skeletal 
structures will be presented. Some new experiments are 



316 

suggested which may elucidate the way the central 
nervous system coordinates and controls posture and 
movement. The results of some of these experiments 
are presented in a paper by Mussa-Ivaldi et al. (1984). 

It is probably a truism to say that the mechanical 
properties of the neuro-muscular system play a signifi- 
cant role in the control of posture and movement. One 
of the more prominent features of muscle mechanics is 
the increase of steady-state output force which accom- 
panies muscle stretch (Gordon et al., 1966; Matthews, 
1959; Rack and Westbury, 1969). This length- 
dependence of muscle force (which is due to both reflex 
action and the molecular mechanics of muscle contrac- 
tion) gives the muscle a behavior analogous to that of a 
mechanical spring. This "spring-like" behavior plays a 
key role in the maintenance of posture. It can also play 
a prominent role in the control of motion; One 
intriguing possibility which has been explored by 
several researchers is based on the observation that the 
spring-like effects of a group of muscles determine an 
equilibrium position (Feldman, 1966; Bizzi et al., 1976, 
1978; Polit and Bizzi, 1978, 1979; Cooke, 1979; Kelso, 
1977; Kelso and Holt, 1980; Schmidt and McGown, 
1980). As a result, the central nervous system may 
execute a movement by generating the set of 
motoneuron activities needed to define a new equilib- 
rium posture. Continuously varying the activities of 
the motoneurons will generate a time-sequence of 
equilibrium postures. One appealing aspect of this idea 
is that it permits a unified treatment of posture and 
movement (Bizzi et al., 1981a, b, 1982a, b, 1984; 
Hogan, 1982a, 1984c). 

While the validity and generality of this description 
of posture and movement behavior is still a topic of 
research, it provides the motivation for the work 
presented here. This paper is based on the idea that in 
controlling posture and movement, the central ner- 
vous system may take advantage of the apparent 
mechanical behavior of the neuro-musculo-skeletal 
system, and considers its ramifications in the case of 
multiple degree of freedom posture and movement. 

Spring-Like Behavior of a Multi-Joint Limb 

The relation between force and displacement of the 
end-point of a limb (e.g. the wrist or hand) can be 
determined experimentally by displacing the end-point 
from an equilibrium position and measuring the 
resulting steady-state force opposing the displacement. 
Is this force-displacement relation "spring-like"? 
Because of the complexity of the interactions in even 
the simplest multiple degree of freedom system, appro- 
priate mathematical tools must be used to address this 
question. It is first necessary to define the term "spring- 

like" rigourously. The single most important property 
of a spring is that it stores elastic energy. This is the 
basis of a completely general definition of a spring 
which is used in physical system modelling (Paynter, 
1961; Rosenberg and Karnopp, 1983). A spring is any 
object which is characterised by a relation, possibly 
nonlinear or even discontinuous, between force and 
displacement t such that the integral of force with 
respect to displacement - the stored elastic energy - is 
defined. This is the origin of the definition of spring-like 
behavior used in this paper. If any system exhibits a 
relation between force and displacement which satis- 
fies this condition, it is spring-like. Note that no 
assumption of linearity is required. The force- 
displacement integral is a potential function analogous 
to elastic energy, but the system itself need not be 
energy conservative. The internal mechanics of muscle 
contraction involve thermodynamically non- 
conservative processes, but a single muscle, either with 
or without feedback, exhibits a nonlinear but inte- 
grable relation between force and length. By the above 
definition it is spring-like. 

From this definition a test of the spring-like 
behavior of a multi-joint system can be formulated. 
Mathematically, the force-displacement relation is a 
vector field, (see Appendix I) and the requirement that 
a potential function be definable places quantifiable 
restrictions on its form. In a multiple degree of freedom 
system a displacement in one direction may cause a 
force to be exerted in another direction. A potential 
function can be defined if and only if a displacement of 
the end-point of the limb in one direction, say, outward 
from the body, would produce a component of force in 
another direction, say, laterally across the midline, 
which is exactly equal to the component of force in the 
outward direction produced by a lateral displacement. 
This is expressed mathematically as the requirement 
that the curl of the vector field be zero (see Appendix I). 

To test the spring-like behavior of the neuro- 
muscular system experimentally, it is only necessary to 
consider small displacements about an equilibrium 
point. Although the force-displacement relation may 
be nonlinear for large displacements, for sufficiently 
small deviations about an equilibrium point it is 
approximately linear (see Appendix I) 

= _ Kxx- Kxy 

F~: Force in x direction 

Fr: Force in y direction 

1 Throughout this paper the term force will refer to both forces 
and moments, and displacement will refer to both position and 
angle 
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dx: Displacement in x direction 

dy: Displacement in y direction 

- -  K~,~, = 8F f f 3x ,  - K~y = 8F f fSy 

- Krx = 8Ff fSx ,  - Kry = 8 F / S y .  

The form of this relation is the same when expressed in 
any coordinate frame. It may written as follows: 

F = -- K dx (3) 

F: Force vector 

dx: Displacement vector 

K: Stiffness. 

The stiffness K, is represented by a matrix of coeffi- 
cients. It can be partitioned into two components, one 
symmetric and one antisymmetric. 

K =Ks+Ka,  (4) 

(K~y + Kr~)/2 [ K. ] (5) K s = (K + Kt)/2 = L(Kxy + Kyx)/2 

K : ( K _ K t ) / 2 =  [ 0 (Kxy-Kyx)/2 ~ 
L(K,x - -K~ , ) /2  0 l "  

(6) 

Superscript t denotes transpose. 
The purely symmetric component, Ks, represents 

the forces which have no curl and can be derived from a 
potential function. This is the spring-like part of the 
behavior. The antisymmetric component, Ka, repre- 
sents the forces which have non-zero curl and can not be 
derived from a potential function. Comparison of the 
relative magnitudes of the symmetric and anti- 
symmetric components of the stiffness provides a 
numerical quantification of the extent to which the 
neuromuscular system is spring-like. Note that 
because this test requires the determination of the 
influence of displacements in one direction on the 
forces generated in another direction, it is only possible 
in a multiple degree of freedom system. The results of 
an investigation of multi-joint posture and movement 
have shown that in intact humans the curl term is small 
in comparison to the spring-like term, (Mussa-Ivaldi et 
al., 1984) confirming that for planar arm postures the 
behavior of the neuro-muscular system is predomi- 
nantly spring-like. 

The Role of Inter-Muscular Feedback 

This rigourous definition of spring-like behavior leads 
to several interesting and useful conclusions. The 
potential at any point is a scalar, coordinate-invariant 
quantity which remains the same when expressed in 

B 

q3 

Fig. 1A and B. A sketch of a planar, two-segment model of the 
upper limb and some of the muscles attached to it. The geometric 
quantities describing the configuration of the skeleton are shown 
in part A; muscle lengths are depicted in part B 

any coordinate frame. The relationship between force 
and displacement in any coordinate frame may there- 
fore be obtained by finding the gradient of the total 
potential function with respect to that coordinate 
frame. 

For example, consider the planar two-segment 
abstraction of the upper extremity (e.g. the forearm 
and arm) sketched in Fig. 1. 

In this conceptual model, the skeletal segments are 
considered to be rigid bodies and the muscles are each 
assumed to have a single point of origin and insertion. 
The force-length behavior of the individual muscles 
defines a total potential which is a function of all of the 
muscle lengths. 
f /=  f~(qi), (7) 

Epi(qi) = I - f f lq , ,  (8) 

ep(q) = Z Ep,(qO (9) 
i 

fi: Individual muscle forces 

q~: Individual muscle lengths 

q: Vector of muscle lengths 

Ep~: Individual potential functions 

E / T o t a l  potential function. 
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The muscle lengths are determined by the configura- 
tion of the limb, e.g. the joint angles, and thus the total 
spring-like effect of the muscles may be expressed (by 
simple substitution) as a scalar potential field defined 
on the joint coordinate space 

q~=qi(O), (10) 

Ev(q) = E v [q(0)] --- Ev(O ) (11) 

0: Vector of joint angles. 
The net torque-angle relation is then obtained by  

taking the gradient of the potential with respect to joint 
angle. 

T 1 = -aEp/O01, (12) 

T2= (13) 

7"1: Shoulder torque 

Tz: Elbow torque 

01: Shoulder angular displacement 

02: Elbow angular displacement. 

Or, in vector notation, 

T = - grad Ep(O). (14) 
0 

Given the kinematic relation between joint angles 
and the position of the end-point in extra-corporal 
coordinates (e.g. cartesian) the net effect of all of the 
muscles may also be expressed (by direct substitution) 
as a scalar potential field defined on the end-point 
coordinates and the net force-displacement relation at 
the end-point may then be obtained by taking the 
gradient of the potential with respect to the displace- 
ment of the end-point 

x=L(0);  0=C- l (x ) ,  (15) 

Ep(O) = Ep [L -l(x)]  = Ep(X), (16) 

F = - grad Ep(x) (17) 

L( ): limb kinematic equations. 
Summarising, because individual muscles may be 

described as spring-like, their combined effect will be to 
define a spring-like behavior for the end-point. Of 
course, the force-displacement relation for the limb 
depends also on feedback-generated interaction be- 
tween muscles. This inter-muscular reflex action could 
introduce a force-displacement behavior with a non- 
zero curl component which could not be described as 
spring-like. In fact, a non-zero curl could only be 
produced by heteronymous inter-muscular reflex arcs 
with unequal gains, e.g. if stretch of the elbow muscles 
produced activation of the shoulder muscles which was 
stronger (or weaker) than the activation of the elbow 
muscles resulting from a corresponding stretch of the 
shoulder muscles. 

In this way a multi-joint system presents new 
opportunities to investigate the role of feedback in the 
control of limb behavior: if a non-zero curl term is 
found experimentally in the force-displacement rela- 
tion for the limb then it can not be attributed to any 
property of the individual muscles, or any effect of 
homonymous feedback, but must be due to heterony- 
mous inter-muscular feedback action. Note that the 
converse is not true: zero curl does not preclude the 
action of inter-muscular feedback with equal gains. 
However, it is important to bear in mind that while the 
spring-like behavior of the total limb may in part be 
due to intrinsic properties of individual muscles and 
may in part be due to feedback action, the distinction 
between these two mechanisms will have no functional 
bearing on the mechanical behavior of the limb. 

The Directional Character of  Multi-Joint Stiffness 

In a multiple degree of freedom system such as the arm 
with its muscles, the force-displacement behavior has a 
directional property; both the magnitude and the 
direction of the output force vector resulting from an 
input displacement vector of a given magnitude will 
depend on the orientation of the displacement vector. 

One aspect of this directional character is ex- 
pressed by the antisymmetric component of the stiff- 
ness, K a. It may be represented by the "pincushion" 
diagram of Fig. 2a in which the arrow depicting the 
force vector is drawn with its tail at the tip of the 
displacement vector. 

The force due to this component is always directed 
at right angles to the displacement with a magnitude 
proportional to that of the displacement. The rota- 
tional character of this component of the total 
stiffness can clearly be seen and is the reason why it is 
referredto as the curl of the vector field. 

The symmetric or spring-like component of the 
stiffness, Ks, also has a directional property. It may be 
represented graphically in several ways: one is the 
pincushion diagram of Fig. 2b; another useful repre- 
sentation is derived from the potential function. As the 
force-displacement relation is approximately linear for 
small displacements, the corresponding potential func- 
tion is a quadratic. 

Ep : - -  Ftdx = I/2 dxtK dx 

= 1/2(Kxx dx 2 + Kx r dxdy + Kyx dx@ + Kyy dy2). 
(lS) 

If the potential E v is a constant, this is the equation 
of an ellipse. The potential function may be represented 
as a surface which looks like a valley or bowl (see 
Fig. 2c) with its bottom at the equilibrium point. 
"Vertical" sections through the potential function are 
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Principal 
Eigenvector 

dy 

/ 

Fig. 2A-C. Graphical representations of a steady-state relation 
between force and displacement vectors. Part A shows an anti- 
symmetric stiffness of the form 

oj LdyJ 
The output force vector is represented by an arrow drawn with its 
tail at the tip of the input displacement vector. Note the 
rotational character which is due to the non-zero curl of the 
vector relation. Part B depicts a symmetric stiffness of the form 

fF:] = F--5/2 3/2-]Fdx], 
L 3 /2 -5 /2JLdy  j 

using the same convention. In this case the vector relation is 
irrotational and has zero curl. A symmetric stiffness may also be 
represented by the potential function which it defines. Part C 
shows an oblique view of the potential function corresponding to 
the symmetric stiffness ofpart B which has the shape of a valley or 
bowl. The ellipses of parts B and C are isopotential contours; 
note that the force vectors are perpendicular to the isopotential 
contours. The eigenvectors of the stiffness are the directions in 
which the force and displacement vectors are co-linear. For this 
stiffness the eigenvalues are 1 and 4 respectively; note that the 
stiffness in the direction of the minor axis is four times ,smaller 
than in the direction of the major axis 

parabolae. "Horizontal" (isopotential) sections 
through the potential function are nested ellipses. The 
major axes of all of the elliptical isopotential contours 
coincide (see Fig. 2b). Mathematically, the orientation 
of the major axis is determined by a quantity known as 
the principal eigenvector of the stiffness Ks. Its physical 
significance is that if the limb is displaced in this 

direction then the restoring force acts in exactly the 
opposite direction. The same is true for displacements 
in the direction of the minor axis, which is also 
determined by an eigenvector of the stiffness. However, 
for displacements in any other direction the restoring 
force will not act in the opposite direction 2, but at an 
angle. In fact, as the restoring force vector is given by 
the gradient of the potential function, it will be oriented 
perpendicular to the elliptical isopotential contours 
(see Fig. 2b). 

The magnitude of the restoring force also depends 
on the direction of the applied displacement. For  
displacements in the direction of the major axis, the 
magnitude of the restoring force is determined by a 
stiffness which is inversely proportional  to the square 
root of the length of the major axis. Mathematically, 
the stiffness in this direction is determined by a 
quantity known as the principal eigenvalue of the 
stiffness. The stiffness in the direction of the minor axis 
is also an eigenvalue. A displacement in any other 
direction can be expressed as a vector sum of displace- 
ments along the major and minor axes and the 
resulting force determined as the vector sum of the 
restoring forces along the major and minor axes. 
Graphically, for displacements in any direction, the 
magnitude of the restoring force at any point is given 
by the steepness of the potential "valley" (closeness of 
the isopotential contours) at that point. 

In short, in the multiple degree of freedom case 
spring-like behavior has a directional property which 
is specified by the eigenvectors of the symmetric 
component of the stiffness. The size and shape of the 
field of restoring forces are specified by the eigenvalues 
of the symmetric component of the stiffness. These 
quantities fully characterise the spring-like behavior. 
As discussed next, the directional property of the force- 
displacement behavior may prove to be important  for 
controlling the interaction between a limb and and its 
environment. 

Modulating the Postural Response of the Limb 

The forces generated by a limb in response to exter- 
nally imposed displacements play a key role in deter- 
mining how the limb will interact with objects in its 
environment. Dynamic interaction between a limb and 
its environment is the goal of a large class of purposeful 
acts; the use of a tool is one obvious example. When 
limb and environment interact the performance of the 
limb is profoundly affected and its stability may be 
jeopardised. Control strategies which are successful for 

2 Unless the eigenvalues of the stiffness are equal, in which case 
the principal axes cannot be uniquely defined 
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free motions may fail when the limb is coupled to its 
environment. To command position alone may suffice 
for reaching or pointing movements but it does not 
provide adequate control of dynamic interaction. 
Something beyond simple position (or force) control is 
required. One practical strategy (Hogan, 1980b, 1982b, 
1983, 1984b, d, 1985) is to modulate the dynamic 
response of the limb to externally imposed distur- 
bances. The neuro-muscular dynamics which generate 
forces in response to imposed displacements constitute 
a mechanical impedance, which can be thought of as a 
dynamic generalisation of the postural stiffness of the 
limb. What is required in general is the control and 
coordination of postural behavior. 

Because of the physiology of muscle contraction, 
intrinsic muscle stiffness increases with increasing 
muscle force and in the presence of feedback the net 
stiffness of a single muscle also increases monotoni- 
cally with the force output from that muscle (up to 
more than half of the range of physiological forces)3 
(Wilkie, 1950; Joyce et al., 1969; Agarwal and Gottlieb, 
1977; Zahalak and Heyman, 1979; Hoffer and 
Andreassen, 1981). Given that the stiffness of a single 
muscle increases with force, (whatever the mechanism) 
it is then possible for the net mechanical stiffness and, 
more generally, the mechanical impedance about a 
single joint to be modulated by coactivation of antago- 
nist muscle groups (Vickers, 1968; Lanman, 1980). This 
may be one of the strategies used by the CNS to control 
postural behavior (Hogan, 1979, 1984a). 

When this concept is generalised to the multi-joint 
case new factors emerge due to the geometry and 
kinematics of muscle attachment. One of the ways of 
controlling the postural behavior of a multi-joint 
limb would be to modulate the size, shape and 
orientation of its end-point stiffness. The end-point 
might be made compliant in one direction to accomo- 
date an external kinematic constraint and stiff in 
another direction to minimise the effects of disturbing 
forces. Alternatively, it might be appropriate for the 
limb to present a uniform postural stiffness to dis- 
turbances in all directions. Either of these would 
require the ability to modulate all of the elements in the 
stiffness independently, including the off-diagonal 
terms representing the interaction between degrees of 
freedom. 

If only those muscle groups spanning a single joint 
were available, synergistic muscle activation would not 

3 In fact, a substantial body of evidence has been amassed in 
support of the postulate (Nichols, 1974; Nichols and Houk, 1973, 
1976; Houk, 1979; Hoffer and Andreassen, 1981; Crago et al., 
1976) that one of the functions of the spinal reflex arcs is to 
regulate or maintain the stiffness of a single muscle at a given 
force level in the face of disturbing influences such as the yield in 
muscle force which accompanies rapid muscle stretch 

be able to modulate all of the terms in the stiffness; 
there would be no way to modulate the interaction 
between joints. However, many muscles cross more 
than one joint. These polyarticular muscles may serve 
an unique purpose: They provide precisely the cou- 
pling between joints needed to permit all of the 
elements in the stiffness to be modulated by muscle 
synergies (Hogan, 1980a, b, 1983). 

For  example, consider the spring-like behavior of 
the end-point of a planar two-segment model of the 
arm with polyarticular (two-joint) muscles included as 
shown in Fig. 3. 

For clarity and simplicity, in this model the mo- 
ment arms of all muscles will be assumed to be 
constant (an assumption valid for small motions) and 
the moment arms of the two-joint muscles, e.g. biceps 
and triceps, about the elbow and the shoulder are 
assumed to be equal. The lengths of the upper arm and 

x - - r - - . .  / 

k /  
Fig. 3A and B. A sketch of a planar, two-segment model of the 
upper limb is shown in part A. Both single- and double-joint 
muscles are included but the geometry of muscle attachment has 
been simplified so that all muscles act with a constant radius, r, 
about the joints. Part B shows the workspace of the limb, the 
region which may be reached by the end-point, given that the 
shoulder angle may lie between 0 and 90 deg and the elbow angle 
may lie between 0 and 180 deg. Because of the two-joint muscles, 
an isotropic and-point stiffness may be achieved throughout the 
shaded region, R, by coordinated synergistic muscle activation. 
In the absence of two-joint muscles this is not possible at any 
point in the workspace 



forearm are also assumed to be equal. Now suppose 
(for the purpose of discussion only) that the central 
nervous system wished to impose a uniform (isotropic) 
stiffness on the end-point, which would mean that an 
input displacement in any direction would produce a 
postural restoring force in exactly the opposite direc- 
tion With a magnitude proportional to that of the 
displacement. The required end-point stiffness would 
be diagonal with equal terms 

[F+] 0 
F r 0 - Kvr dy 

(19) 

where Kxx = Kyy- K, a constant. 
The end-point stiffness and the corresponding joint 

stiffness are related through the Jacobian of the known 
kinematic relation between joint angles and end-point 
coordinates. The required stiffness in joint coordinates 
is: (see Appendix II). 

= I- - K ( q  + 122 + 1112 c o s  02) - + l, 12 c o s  02 ) ]  

L -K( l~+l j2c~  - K l ~  J 

do 2_l " (20)  

Note that the diagonal end-point stiffness requires 
a non-diagonal joint-coordinate stiffness. If only single 
joint muscles were present, the stiffness achieved by 
simultaneous synergistic activation of all of the mus- 
cles would be (in joint coordinates): 

(21) 

single-joint shoulder 

LdO2J 

Rs: Angular stiffness due to 
muscles 
Re: Angular stiffness due to single-joint elbow muscles. 

It can be seen that because of the absence of 
coupling between the joints (no off-diagonal terms) the 
isotropic end-point stiffness of Eq. (19) [which requires 
the joint coordinate stiffness of Eq. (20)] cannot be 
achieved. 

In contrast, if the two-joint muscles are included, 
then the stiffness achieved by simultaneous synergistic 
activation of all of the muscles would be (in joint 
coordinates): 

- -  R t 

L -R, LdO2J (22) 

Rt: Angular stiffness due to two-joint muscles. 

Because of the coupling due to the two-joint 
muscles, an isotropic end-point stiffness can now be 
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achieved throughout a large portion of the workspace, 
the shaded region R in Fig. 3 (see Appendix II). 

The quantitative details of the results presented in 
Fig. 3 are sensitive to the assumptions made in their 
derivation. However, even if these assumptions are 
modified to better represent the true musculo-skeletal 
geometry, the qualitative results remain the same: the 
presence of polyarticular muscles dramatically in- 
creases the ability of the central nervous system to 
modulate the total end-point stiffness of the limb 
through coordinated synergistic muscle activation. 

Dynamic Aspects of Postural Behavior 

So far this paper has considered the relation between 
force and displacement. Muscle force also depends 
upon dynamic variables, for example, the velocity of 
muscle shortening (Hill, 1938; Katz, 1939; Wilkie, 
1950; Bigland and Lippold, 1954; Joyce et al., 1969) 
and the force-displacement relation is only one aspect 
of the total effective mechanical behavior of the limb. 
These dynamic effects will play an important role in 
posture and movement. 

In developing more general models of the mechan- 
ical behavior of a limb, it is important to realise that the 
neuro-muscular system is properly described as a 
mechanical impedance, (an object or system which 
accepts motion inputs and yields force outputs) 
whereas the skeleton is properly described as a mech- 
anical admittance (an object or system which accepts 
force inputs and yields motion outputs). The im- 
portance of this distinction lies in the fact that if two 
systems (e.g. the muscles and the skeleton) are math- 
ematically modelled by two sets of differential equa- 
tions with no distinction made between admittance 
and impedance, then when the two systems are coupled 
such that the output of one is the input to the other 
(and vice versa), in general it may not be possible to 
write a single set of integrable and solvable differential 
equations to represent the behavior of the complete 
system (see Appendix III). 

This is because a kinematically constrained mech- 
anical linkage such as the skeleton may not, in general, 
allow an arbitrary displacement or motion to be 
imposed on it; A mathematical model of the linkage 
written with motion as the input variable may not be 
solvable for force as the output variable. On the other 
hand, an arbitrary force may be applied to the linkage; 
A mathematical model of the linkage with force as the 
input can always be solved for the resulting motion. A 
linkage is properly described as a mechanical ad- 
mittance (Hogan, 1984b, d, 1985). If care is taken to 
preserve the distinction between impedance and ad- 
mittance, a solvable set of differential equations may 
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always be written for the complete neuro-musculo- 
skeletal system (see Appendix III). 

Because the dynamic equations describing the 
skeleton must see an input force, the neuro-muscular 
system must produce an output force; As the skeletal 
system is an admittance the neuro-muscular system 
must be an impedance. Any model of the neuro- 
muscular system, however complex, may always be 
written in a form which may be solved explicitly for the 
net force exerted on the skeletal linkage. 

One useful consequence of this observation is the 
fact that the total impedance of all of the muscles and 
ligaments attached to the skeleton may be obtained by 
adding the component impedances even when these 
component impedances are themselves nonlinear. In Eqs. 
(7)-(9) this fact was used to find the net force- 
displacement behavior due to all of the muscles of a 
limb. In considering dynamic aspects of postural 
behavior it means that if the net behavior of the neuro- 
muscular system can be decomposed or "dissected" 
into individual components these may be recombined 
by simple addition without any loss of generality. 

As a result, quite a general and powerful model of 
neuro-muscular behavior may be formulated by con- 
sidering each muscle separately and describing its 
behavior as a series of components, the first being a 
relation between output force and input displacement, 
the second being a relation between output force and 
input velocity, and so on, each new component 
representing successively higher-order dynamic effects. 

Accordingly, the velocity-dependent behavior of 
the neuro-muscular system may be treated as another 
component of the total impedance of the limb. All of 
the above discussion of the "spring-like" behavior of 
muscles may now be applied to the "viscous-like" 
behavior with the input velocity taking the place of the 
input displacement. Thus, although the velocity- 
dependent behavior of a single muscle may be non- 
linear and may be due to sensory feedback loops or due 
to the intrinsic molecular mechanics of muscle contrac- 
tion or due to passive tissue effects, it must be such that 
an input velocity defines an output force. As a result, a 
scalar potential function may be defined just as in the 
case of the length-dependent behavior. This potential 
function does not correspond to energy but has similar 
properties: It is a scalar function defined on the 
velocity space and it is invariant under a change of 
coordinates. If the net behavior of the system were only 
due to the simple aggregate of the individual muscle 
behaviors (of whatever origin) a total "viscous poten- 
tial" function for the neuro-muscular system could be 
obtained by summing the component "viscous poten- 
tial" functions of the individual muscles. The net 
velocity-dependent behavior in any coordinate frame 
could then be determined from the gradient of this 

"viscous potential". On the other hand, inter-muscular 
reflex feedback action with unequal gains could intro- 
duce a velocity-dependent force which would not be 
derivable from a potential function, i.e. a curl compo- 
nent. A linearised viscosity may be defined and parti- 
tioned into symmetric and antisymmetric components. 
Experimental measurement of the viscosity would 
permit a quantitative comparison of the relative mag- 
nitudes of the "viscous-like" forces derivable from a 
potential function and the forces due to a curl term 
which can only arise from asymmetric inter-muscular 
feedback action. 

The velocity-dependent behavior has a directional 
property similar to that of the position-dependent 
behavior; the magnitude and direction of the output 
force vector depends on both the orientation and the 
magnitude of the input velocity vector. The directional 
character of the curl-free (viscous-like) velocity- 
dependent forces can be represented by the ellipsoid 
associated with the viscosity; its size, shape and 
orientation are characterised by the eigenvalues and 
eigenvectors of the viscosity. Modulating the size, 
shape and orientation of the end-point viscosity may 
be one of the strategies adopted by the CNS to control 
interaction with its mechanical environment. Given 
that the apparent viscosity of a single muscle (the slope 
of its force-velocity characteristic) increases with 
muscle force, (Bigland and Lippold, 1954; Joyce et al., 
1969) coordinated synergistic activation of all of the 
muscles of a limb is one way to modulate the velocity- 
dependent behavior of the end-point of the limb 
(Vickers, 1968; Lanman, 1980). As with the stiffness, 
the presence of polyarticular muscles dramatically 
increases the extent to which the velocity-dependent 
component of postural behavior may he modulated 
through coordinated simultaneous activation of the 
muscles. 

Modulation of Inertial Behavior 

Another important component of the postural 
behavior of the limb is the relation between force and 
acceleration due to the inertia of the limb segments. If 
the displacement and velocity dependent behavior of 
the neuro-muscular system can be modulated, can the 
inertial behavior of the skeleton also be modulated? 
Unlike the mechanical parameters of muscle there is no 
known physiological process through which the cen- 
tral nervous system can voluntarily modulate the 
inertia of a single skeletal segment; However, once 
again, a multi-joint system is behaviorally richer than a 
single-joint system. A measure of control over the 
complete inertial behavior of a multi-joint limb is 
possible. 
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The apparent inertial behavior of a mechanical 
linkage such as the upper limb is characterised math- 
ematically by its mobility tensor (Hogan, 1984b, d, 
1985). Physically, if the limb is at rest (zero velocity) 
then an applied force vector causes an acceleration 
vector (not necessarily co-linear with the force) which is 
obtained by premultiplying the force vector by the 
mobility tensor (see Appendix IV). As with the stiffness 
and viscosity, the apparent inertial behavior of the end- 
point has a directional property; the magnitude and 
direction of the acceleration vector depends on both 
the orientation and magnitude of the applied force. For  
a two-segment model of the upper limb, (e.g. Figs. 1 or 
3) this directional character depends strongly on the 
location of the end-point in the workspace. When the 
end-point is near the shoulder the acceleration in the 
radial direction will be large compared to the accelera- 
tion in the tangential direction (for an applied force of 
the same magnitude); The end-point is more mobile 
radially than tangentially. When the elbow is near full 
extension, the converse is true; The acceleration.in the 
radial direction is small compared to the acceleration 
in the tangential direction (for an applied force of the 
same magnitude). 

Because the apparent inertial behavior of the end- 
point depends on its position in the workspace, the 
central nervous system would gain a limited measure 
of control over the end-point mobility by choosing the 
location in the workspace at which to perform a 
manipulation. Of course, for a simple planar two-  
segment system, if the end-point location were not 
something the central nervous system could choose (as 
would be the case in many realistic situations) the 
mobility could not be modulated because once the 
end-point position has been specified the end-point 
mobility has been specified. However, in reality the 
upper extremity is not restricted in this way; the 
number of degrees of freedom in the upper extremity 
far exceeds the number of degrees of freedom required 
to describe the position of the hand in space. Looking 
from the sternum outwards there are at least 9 dfin the 
skeleton supporting the hand, 4 (12 or more if the 
motion of the scapula relative to the clavicle is 
considered) whereas the position of the hand in space 
has at most six degrees of freedom. The additional 
degrees of freedom give the central nervous system new 
behavioral options and can be used as "control 
inputs". The "kinematic redundancy" of the skeletal 
system provides a substantial measure of control over 
its end-point inertial behavior. 

4 In this discussion the hand is considered to be a single rigid 
body and the degrees of freedom of the palm, the thumb and the 
fingers are being ignored 
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Fig. 4A-E. A sketch of a planar three-segment model of the upper 
limb is shown in part A. A graphical representation of the 
directional character of the apparent inertia of the end-point is 
shown in part B via the mobility ellipse, the locus of values of the 
end-point momentum vector for which the kinetic energy stored 
in the linkage is a constant_ The eigenvectors of the mobility 
tensor, W, are the directions in which a force vector applied at the 
end-point when the limb is at rest will result in a co-linear 
acceleration vector. The lengths of the major and minor axes of 
the mobility ellipse are proportional to the square roots of the 
apparent mass of the limb in those directions. Parts C-E depict 
the way the apparent end-point inertia of a three-segment linkage 
changes with configuration while the location of its end-point 
remains the same. Note that the apparent mass in both the x and 
y directions changes by a factor of six between configurations C 
and E 

For  example, consider the planar three-segment 
model of the upper extremity (e.g. arm, forearm and 
hand) shown in Fig. 4. 

If the orientation of the hand is neglected, only two 
quantities are required to specify the location of the 
end-point, whereas three joint angles are required to 
define the configuration of the linkage. As in the two- 
segment case the apparent inertial behavior of the end- 
point is a function of the configuration of the limb and 
because of the "extra" degree of freedom, the configura- 
tion of the limb may be used to modulate the effective 
end-point mobility even when the location of the end- 
point is fixed. For  a given position of the end-point, as 
the wrist is rotated the mobility in any given direction 
undergoes a substantial change. For  some orientations 
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Table 1. Variation of the apparent end-point mass of a three- 
segment planar linkage due to configuration changes 

Distal link Apparent mass Apparent mass 
orientation x-direction y-direction 
[deg] 

[kg] 

90 0.322 1.823 
135 0.568 0.568 
180 1.823 0.322 

Each segment is assumed to be a uniform rod of linear density 
1 kg/m. Segment lengths are 1, 2, and 3 m respectively 

of the wrist a perturbing force directed towards the 
shoulder joint is resisted primarily by the rotational 
inertia of the hand and the effective end-point mobility 
is large; for other orientations of the wrist the motion 
of the end-point in response to the same perturbing 
force is resisted by the inertia of the hand, the forearm 
and the upper arm and the effective end-point mobility 
is reduced. To demonstrate the magnitude of this effect, 
Table 1 shows the values of the apparent end-point 
mass of a simple three-segment linkage composed of 
uniform rods of linear density 1 kg/m and lengths 1, 2, 
and 3 m respectively. As the distal link rotates through 
ninety degrees, the end-point location remaining un- 
changed, the apparent mass in each of the two 
orthogonal directions changes by a factor of six. 

A graphical picture of the effective inertial behavior 
of the skeleton is available which closely parallels that 
used to represent the spring-Iike behavior of the neuro- 
muscular system. The inertial behavior of any mechan- 
ical system is properly defined through the storage of 
kinetic energy (see Appendix III). As kinetic energy is a 
scalar, invariant under any coordinate transformation, 
the total effective inertial behavior may be described in 
any coordinate frame. The mobility tensor in end- 
point coordinates is related to the mobility tensor in 
joint coordinates through the Jacobian (see 
Appendix IV). 

W = JYY 

W: End-point coordinate mobility tensor 

Y: Joint-coordinate mobility tensor 

J: Jacobian. 

This equation determines the end-point mobility 
even when the Jacobian is not square and does not 
have an inverse, as is the ease when the linkage degrees 
of freedom exceed the end-point degrees of freedom. 
Because the skeleton is a mechanical linkage which can 
only store energy, not supply or dissipate it, the 
mobility is symmetric and, as with the stiffness and 

viscosity, can be used to define an ellipse. This ellipse 
depicts the directional character of the effective inertial 
behavior, as shown in Fig. 4. The eigenvalues and 
eigenvectors of the symmetric mobility tensor deter- 
mine its size, shape and orientation. The eigenvectors 
represent directions in which a force applied when the 
system is at rest will result in an instantaneous 
acceleration co-linear with the force. In any other 
direction the impressed force and the resulting accelera- 
tion will not be co-linear 5. Each eigenvalue represents 
the mobility (inverse mass) in the direction of the 
corresponding eigenvector. The length of the major 
(and minor) axis of the ellipse is proportional to the 
square root of the effective mass in that direction. 
Figure 4 shows how the ellipse associated with the end- 
point mobility of a linkage composed of three uniform 
rods of linear density 1 kg/m and lengths 1, 2, and 3 m 
respectively changes with configuration as its end- 
point location remains constant. 

In summary, the central nervous system may 
modulate its inertial behavior by repositioning the 
limb. The ability to modulate the inertial behaviour or 
mechanical admittance of the skeleton complements 
the ability to modulate the mechanical impedance 
(stiffness, viscosity, etc.) of the neuromuscular system. 
Modulating both admittance and impedance permits 
control and regulation of the entire postural behaviour 
of the limb and this suggests the interesting possibility 
that the impedance (e.g. stiffness, viscosity) and ad- 
mittance (e.g. inertia) may be coordinated in some way 
by the central nervous system to yield a desired 
postural behaviour. Some preliminary results of an 
investigation of this possibility are presented by 
Mussa-Ivaldi et al. (1984). 

"Redundancy" or excess degrees of freedom in- 
crease the extent to which the mobility of the limb can 
be modulated. In general, the greater the number of 
joints, the greater the freedom of choice. Excess degrees 
of freedom have an equally strong influence on the 
total effective stiffness and viscosity of the limb. 
Because of this, changing the configuration of the limb 
may prove to be the dominant mechanism for 
modulating the directional aspects of its stiffness and 
viscosity as well as its mobility. In considering the 
control of posture and movement, the geometry or 
configuration of the limb should be regarded as a 
"control input" on par with alphamotoneuron activity. 
Taking advantage of musculo-skeletal geometry to 
facilitate the maintenance of posture or the control of 
movement is only possible in a multi-joint system and 
any question about the extent to which the central 
nervous system exercises this option cannot be ad- 
dressed in single-joint studies. 

5 Unless the eigenvalues are identical 
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The Relation of Posture to Movement 

The previous sections examined the postural behavior 
(stiffness, viscosity, mobility) of a multi-joint limb. 
Movement of a multi-joint limb may also be described 
in the same unified framework by extending some 
results derived from single-joint studies. The spring- 
like behavior of the neuro-muscular system is the key: 
it defines an equilibrium posture for the limb as a 
function of the neuro-muscular activity. As the neuro- 
muscular activity varies, a sequence of equilibrium 
positions may be defined, thereby generating a move- 
ment. In the multi-joint case the potential function 
defined by the spring-like behavior may be envisioned 
as a "valley" with the equilibrium position of the limb 
at its bottom (Hogan, 1980a, b, 1983). As the neuro- 
muscular activity varies this equilibrium position may 
be moved through the workspace and as a result the 
limb will move so as to approach that equilibrium 
position. A useful graphic image is that of a deformable 
surface containing a movable depression. The 
behavior of the limb is analagous to that of a ball 
rolling on this deformable surface. The ball will tend to 
seek the lowest point on the surface but that point may 
move ahead of it or behind it, thereby generating the 
forces required to accelerate and decelerate the ball. 
The viscous-like forces are analogous to a sticky 
coating on the rolling ball, which will always tend to 
decelerate it. 

This unified treatment of posture and movement 
through the spring-like behavior of the muscles has 
been successfully applied in the single-joint case. It has 
been shown (Bizzi et al., 1976; Polit and Bizzi, 1978, 
1979) that the postures at the beginning and end of a 
single-joint point-to-point movement are in stable 
equilibrium (even in the absence of reflex feedback). A 
subsequent study (Bizzi et al., 1984) has shown that the 
trajectory between these points also exhibits stable 
equilibrium behavior; if the limb is disturbed during a 
movement it tends to return to the trajectory of an 
unperturbed motion rather than proceed directly to 
the target position. The simple assumption that move- 
ment could be generated by continuously varying the 
equilibrium position defined by the neuro-muscular 
activity was used in a computer simulation which 
successfully predicted all of the major qualitative and 
quantitative features of the observed perturbed and 
unperturbed movements (Hogan, 1984c). 

In extending this unified treatment of posture and 
movement to the multi-joint case the potential func- 
tion not only provides a description of the forces 
causing movement, it describes the stability of the 
trajectory. Again the image of a ball rolling on a 
deformable surface is useful: following a disturbance 
encountered when the moving depression is in transit 

between the start and target positions, the ball will tend 
towards the point defined by the current position of the 
depression rather than the target position. Because of 
the dynamic forces governing its behavior (e.g. viscos- 
ity, inertia, etc.) the ball need not move directly 
towards the bottom of the "valley" (i.e. its velocity 
vector need not point towards the current location of 
the time-varying equilibrium position). Indeed, if the 
deformable surface were shaped so as to define an 
elongated valley oriented along the line joining the 
start and target positions, the ball would tend to fall 
down the sides of the valley before moving along its 
length towards the target, and in this way it would tend 
to return to the original undisturbed trajectory 
(Hogan, 1980a, b, 1983). In the case of the moving limb, 
forces tending to make it deviate from the base of the 
valley, such as those due to the coriolis and centrifugal 
accelerations, would be resisted by the steepness of the 
valley walls. 

The time-varying equilibrium posture defined by 
the synergistic action of the muscles 6 may be thought 
of as that position towards which the net muscular 
activity is driving the limb at any point in time. It is a 
summary statement of one of the mechanical effects of 
the net neuro-muscular activity. As it is merely a 
convenient descriptive device it need not correspond to 
the actual position of the limb, and in fact need not 
even lie within the workspace of the limb. For this 
reason, it has been termed the "virtual position" 
(Hogan, 1984c; Bizzi et al., 1984). During movement it 
will in general differ from the actual position as the 
detailed time-course of the movement will be deter- 
mined by the interaction between the inertia of the 
limb and the impedance of the neuro-muscular system; 
when posture is achieved the virtual and actual 
positions coincide. From this perspective, posture may 
be regarded as a special (or degenerate) case of 
movement. 

The movable and deformable potential valley is a 
completely 9eneral representation of the modulation of 
the spring-like behavior of the neuro-muscular system 
by the neural commands. Does it lead to new insights? 
One interesting question is: Does spring-like behavior 
permit the central nervous system to adopt simplifying 
control strategies? One such strategy would be to pre- 
plan a virtual trajectory in work-space coordinates 
which proceeded from start to target and also pre-plan 
an impedance (e.g. a potential valley plus any higher- 
order terms) to provide a measure of stability to that 
virtual trajectory. Because of the stability provided by 

6 Note that this description of the moving limb as being driven 
toward a varying equilibrium position may be used even if the 
force displacement behavior of the neuro-muscular system were 
to include a cuff term 
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the neuro-muscular impedance the actual trajectory 
would be relatively insensitive to errors in knowledge 
of the initial position or even to errors in knowledge of 
the limb dynamics. This type of control strategy is in 
sharp contrast to the conventional approach to robot 
movement control. It is generally perceived (Paul, 
1981) that fast and accurate computation to solve a 
complicated set of kinematic and dynamic equations 
describing the robot is necessary to generate co- 
ordinated movements. These are the so-called "inverse 
kinematics" and "inverse dynamics" problems of robo- 
tics and it has been suggested (Hollerbach, 1982) that 
they are fundamental to biological movement control. 
However, using the above approach the inverse kine- 
matics problem can be eliminated completely (Hogan 
and Cotter, 1982; Hogan, 1984b, d, e, 1985) and, given 
appropriate neuro-muscular stiffnesses and viscosities, 
accurate and detailed precomputation of the nonlinear 
inertial dynamic interaction forces (due to coriolis and 
centrifugal accelerations) would not be necessary 
(Hogan, 1980a, b, 1983, 1984d, e) to achieve the appro- 
ximately straight movements of the hand which are 
typically observed (Abend et al., 1982). The validity of 
this control strategy as a description of the behavior of 
the central nervous system is presently under investiga- 
tion. A recent computer simulation study which was 
based on experimentally derived musculo-skeletal 
parameters showed good agreement with experimental 
observations (Flash and Mussa-Ivaldi, 1984). The 
power and practicality of this control strategy has been 
demonstrated by applying it to a simple robotic 
manipulator and achieving "sophisticated" behavior, 
including point-to-point motion, constrained motion, 
and avoidance of unpredictably-moving objects, using 
an "unsophisticated" controller based on simple 8-bit, 
2-MHz microprocessors (Andrews and Hogan, 1983). 

Conclusion 

Consideration of the control of multi-joint posture and 
motion opens up a vast (and largely unexplored) area 
of research into the neurophysiology of motor control. 
New and qualitatively different experiments become 
possible in the multi-joint case. For example, an 
experimental quantification of the extent to which the 
neuro-muscular system exhibits spring-like behavior is 
obtainable from the relative magnitudes of the sym- 
metric and antisymmetric components of the stiffness 
and measurement has confirmed that the system is, in 
fact, predominantly spring-like (Mussa-Ivaldi et al., 
1984). 

New]nsights into the possible function ofmusculo- 
skeletal structures may be gained. For example, 

polyarticular muscles dramatically increase the extent 
to which coordinated synergistic activation of the 
muscles may modulate the impedance of the end-point 
of the limb. 

New insights into the role of neural feedback 
emerge. Any curl term in the force-displacement (or 
force-velocity) behavior of the limb can only be due to 
heteronymous inter-muscular feedback. Furthermore, 
measurement of the stiffness (and viscosity) permits a 
numerical quantification of the roles of neural feed- 
back vs. intrinsic muscular properties in the control of 
posture and movement which is not possible in the 
single-joint case. 

New behavioral possibilities emerge. For example, 
while no physiological process is available for volun- 
tary modulation of the inertial behavior of a single 
limb segment, the effective end-point mobility of a 
multi-joint limb may be modulated. In essence, in the 
multi-joint case the geometry or configuration of the 
musculoskeletal system becomes one of the "inputs" 
available to modulate and control the system behavior. 

New perspectives on motor coordination by the 
central nervous system emerge. Because multi-joint 
stiffness (and viscosity and inertial) is characterised by 
a shape and orientation as well as a magnitude, it can 
be seen that the postural behavior of a multi-joint 
system may be coordinated by the central nervous 
system. Coordinating postural behavior will play an 
important role in controlling tasks such as the use of a 
tool which require dynamic interaction between limb 
and its environment. 

Note that the difference between limb and environ- 
ment is primarily a descriptive distinction and 
modulating the complete dynamic behavior of the limb 
may simplify unperturbed movement control. The 
environment of the forearm includes the hand and any 
objects grasped by it, but also includes the arm and the 
other connected body segments. Dictating the im- 
pedance of a limb segment specifies its response to 
"environmental" inputs; This could be used to produce 
a coordinated interaction between limb segments 
without the need for continuous intervention from the 
higher controlling levels of the central nervous system. 
This "passive coordination" could be generalised to 
control the interaction between two limbs (or more - 
consider the fingers and thumb) or to control the 
interaction of two (or more) limbs mechanically 
coupled across a grasped object such as a tool. 

Some well-established ideas about the role of the 
nervous system may need to be re-thought. Apparent 
redundancies or excess degrees of freedom in the 
musculo-skeletal system (i.e. the presence of more 
muscles than there are joints, the presence of more 
joints in the arm than the degrees of freedom specifying 
the position of the hand) complicate the control of 
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undisturbed movements and it is commonly perceived 
that one of the functions of the neural circuitry is to 
simplify the control of movement by imposing "neural 
constraints" to reduce the number of degrees of 
freedom (Bernstein, 1967). Rather than presenting a 
problem which the motor controller must solve, they 
may offer a solution to the problem of controlling 
interactive behavior. By selectively reconfiguring the 
limb or synergistically coactivating appropriate 
groups of muscles it may be possible for the central 
nervous system to modulate or control the net dy- 
namic behavior of the limb seen at the end-point. 

Conversely, new limitations on the performance of 
the system may be identified. Controlling the complete 
dynamic behavior of the limb may be beyond the 
capacity of the central nervous system. The simplest 
possible (linearised) description of the dominant (sec- 
ond order) dynamic behavior of the neuro-musculo- 
skeletal system which drives the hand requires (sym- 
metric) six-dimensional stiffness, viscosity and mo- 
bility matrices. Even these quantities, which are simpli- 
fied representations of the true behavior, require 21 
independent parameters each, a total of 63, to be 
completely defined. If the disturbance is sufficiently 
abrupt, then, because of the inevitable transmission 
delays, continuous intervention based on neural feed- 
back information will not be a feasible method of 
modulating these quantities (e.g. consider the impact 
processes involved in catching an object or wielding a 
hammer). In this case the intrinsic properties of the 
musculoskeletal system provide the only vehicle for 
modulating the total dynamic behavior. The system 
may not be sufficiently redundant to accomplish this. 

Unfortunately, many of the problems of multi-joint 
control are intrinsically complex and must be ap- 
proached with care. If valuable insight is not to be lost, 
mathematical techniques of sufficient power and gen- 
erality must be used in their analysis. The techniques 
used in the work reported in this paper and elsewhere 
(Hogan, 1980b, 1982b, 1983, 1984a-e, 1985) are an 
attempt to develop a systematic approach to these 
problems and offer a unified framework in which to 
consider posture and movement. Despite its formi- 
dable complexity, the study of multi-joint posture and 
movements is an important aspect of motor neuro- 
physiology. It offers an unparalleled opportunity to 
learn about the organisation and function of the 
central nervous system. 

Appendix I 

From the definition of spring-like behaviour, force, F, is an 
explicit function of position, x. This function defines a vector 
field: 

F =F(x). (AI) 

In addition, this function must be integrable to define a 
potential function, Ep: 

Ev(x) = ~ -Ftdx = f dEv(x), (A2) 

F(x) = - grad Ev(x ). (A3) 
x 

In planar cartesian coordinates: 

F F~ x = [ :  t = [ F y l = :  F'~(x'y,] (14) 
LF&, y)J' 

- grad E(x, y) = = (A 5) 
L ry( x, y)J 

J 
The curl of the vector field is defined as: 

curlF(x, y) = 8F~ 8F~. (A6) 
8y 8x 

From the definition of a potential function, 

curl grad Ev(x, y) = 0. (A7) 

A necessary and sufficient condition for the vector field 
F(x, y) to be spring-like is: 
curlF (x, y) = 0. (A8) 

The vector field may be nonlinear. If it is sufficiently 
differentiable in the neighbourhood of a point (x0, Yo) it may be 
expanded as a Taylor series. 

8F~ 8Fx 
Fx = F~( xo, Yo) + ~xx (x~ Yo) dx + ~yy ( xo, Yo) dy 

+ higher order terms, (A9) 

~Fr dx ~?F~ 
F,  = Fr(xo, Yo) + -ffffx (x~ Yo) + ~ (Xo, Yo) dy 

+ higher order terms. (110) 

At an equilibrium position Fx(xo, Yo)=Fy(xo, Yo)=O. For 
sufficiently small displacements from equilibrium, the higher 
order terms may be neglected, and the force-displacement 
relation is linear to a first-order approximation. 

-- Kxy dx 

8Fx 8F~ 

8Fy 8Fy 
K,~ = 8xx - Krr = ~ y .  

(Al l )  

If the curl of the vector field is zero, 

c~F~ _ 8Fr _ 
--Kxr- 8y 8x Ky~, 

and the stiffness K= I-|Kx~ Kxr|7 is symmetric. 
L Ky~ Kyy3 / 

(A12) 
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Appendix  II 

An isotropic end-point stiffness corresponds to a stiffness tensor 
with equal eigenvalues. 

Fdxl, (113) [:;]=[: 
F =  - K d x .  (A14) 

The transformation from joint coordinates to end-point 
coordinates is: 

x = ll cos01 + 12 cos(01 + 02), (A15) 

y = la sin0~ + 12 sin(0~ + 02) (A16) 

l~ : length of link 1 

12: length of link 2. 

The differential transformation from joint coordinates to 
end-point coordinates is: 

dx = - I i sin 0 ~dOa - 12 sin (01 + 02) (dOa + dOz), (1 17) 

dy = I1 cosOld01 + l., cos(01 + O.,)(d01 + dO2). (A18) 

In a more compact notation: 

[dx] F-l,s1-12s,2-1as121[d011 
dy = L I l c , + l z q 2  12c*2JLdO=J (A19) 

s, : sin01 s,z : sin(01 + 02) 

q :cos0, c , a : c o s ( G + 0 2 ) .  

The configuration-dependent differential transformation 
matrix is called the Jacobian, J 

dx = J dO. (A20) 

An incrementalchange in potential energy will be the same in 
all coordinates. 

dE v = - TtdO = - Ftdx = - FtJd0. (A21) 

Thus the transformation from end-point force to joint torque 
is: 

T = JtF.  (A22) 

Using Eqs. (A22), (A14), and (A20), the transformation from 
end-point stiffness, K, to joint-coordinate stiffness, R, is: 

T = - RdO = - J~KJ dO, (123) 

R = J t K J .  (A24) 

Using Eq. (A19) and the trigonometric identity 
s~sa2 + c~c12 = ca, the joint-coordinate stiffiless required to pro- 
duce the isotropic end-point stiffness of Eq. (A13)is: 

[ l~+I~+21112c2 l~+1112c21 (A25) 
R=K k l +l&c  l~ J" 

The joint-coordinate stiffness due to simultaneous syner- 
gistic activation of single-joint shoulder and elbow muscles and 
two-joint muscles is: 

Rt VR, + R, Re + Rt]" (A26) l l= k R, 

If an isotropic end-point stiffness is to be achieved, Eqsi (A25) 
and (A26) must be identical. The following three simultaneous 
equations must be satisfied: 

R~ = K(I~ + 1112c2) , (A27) 

Re= -Kl112c2, (A28) 

Rt = K(lZ~ + lllzca) . (129) 

In the absence of two-joint muscles Rt=0. 
Aside from the trivial case K = Re = Rs = Rz = 0, if 11 = l> no 

solution exists if Rt = 0. 
In contrast, in the presence of two-joint muscles, assuming 

Re, R~, and Rt are non-negative and lx = 12, an isotropic end-point 
stiffness can be achieved in the region 

90 ~ < Oz < 180 ~ . (A30) 

Appendix I l I  

If the neuromusculoskeletal system is described as a state- 
determined system, the equations will have the following general 
form: 

~=f(s ,  t) (A31) 

s: vector of state variables 

t: time 

f (  ): algebraic function. 

The complete system may be partitioned into two interacting 
state-determined subsystems (e.g. the skeleton and the neuro- 
muscular system) such that: 

s = (132) 

sl: state vector of subsystem 1 

s/: state vector of subsystem 2. 

If each subsystem is written in general state-determined form 
without regard to the distinction between impedance and 
admittance, the system equations will have the following form: 

Subsystem 1 : ~ = f l ( s D  ul, t) (A33) 

r 1 = gl(sl, nl, t) (A34) 

u: vector of inputs to subsystem 1. 

r: vector of outputs from subsystem 1. 

gz( ) : algebraic function 

Subsystem 2 :s2  = f2(s2, u2, t) (A35) 

r2 = g2(s2, u2, t). (A36) 

The two subsystems interact such that the output of one is 
the input to the other and vice-versa 

ul =r2 ,  (A37) 

u2 = r l .  (A38) 

Unfortunately, it is in general not possible to reassemble Eqs. 
(133) through (A38) into the form ofEq. (A31). To do so it is 
necessary to express the inputs u, and uz as explicit functions of 



the states s 1 and s2 and time. However, combining Eqs. (A34), 
(A36), (A37), and (A38) yields an implicit form 

Ul = 92(s2, gl(Si, ul, t), t), (139) 

u2 = g l(si, 02(s2, u2, t), t). (140) 

Without further knowledge of the form of the algebraic 
functions gl( ) and 92( ) it is in geueral not possible to express 
Eqs. (A39) and (A40) in explicit form. 

Closer examination of the subsystems provides the necessary 
additional information. If the skeleton is assumed to be com- 
posed of rigid bodies kinematically constrained relative to one 
another, it is a generalised inertial system. The defining property 
of an inertial system is its ability to store kinetic energy, defined as 
the integral of(generalised) velocity with respect to (generalised) 
momentum (Crandall et al., 1968). At any configuration defined 
by generalised coordinates, 0, (e.g. joint angles) the kinetic 
energy, Ek, is a quadratic form in momentum, h 

Ek(0, h) = 1/2 hrY(0) h. (A41) 

Y(0) is the symmetric, twice-contravariant mobility tensor 
(Hogan, 1984). It is the inverse of the inertia tensor (Crandall et 
al., 1968) and in general changes with configuration. 

The rigid-body assumption means that the kinetic energy is 
also the total energy of the skeletal system and is equal to its 
Hamiltonian. The system equations may then be written in the 
generalised Hamiltonian form (Stiefel and Scheifele, 1971) as 
follows: 

dO/dt = grad E~(O, h), (A42) 
h 

dh/dt= - grad Ek(O, h) + T .  (A43) 
0 

T is a vector ofgeneralised forces or torques. Equations (A42) and 
(A43) are the state equations corresponding to Eq. (A33) with 0 
and h as the states 

 A44) 

The generalised velocity, to, is found from Eqs. (A41) and 
(A42) 

to=Y(0) h. (A45) 

Equation (A45) is the output equation corresponding to 
Eq. (A34). 

The generalised inertial system described by Eqs. (142), 
(A43), and (A45) is a mechanical admittance with force (torque) 
input and motion (velocity) output. The output Eq. (A45) does 
not depend directly on the input, that is, it has the general form: 

ri = g i ( s l ,  t ) .  (A46) 

Because of this, Eqs. (A33), (A46), and (A35) through (A38) 
may now be expressed in the form of Eq.(A31)by simple 
substitution 

sl = fi(si,  g2(S2, gi(sl, t), t), t), (A47) 

s2 = f2(s2, gi(sl, t), t). (A48) 

Appendix IV 

The inertial behaviour of a mechanical linkage such as the 
skeleton is characterised by the mobility tensor, Y, which relates 
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generalised ;mlocity, w, to generalised momentum, h [see 
Eq. (A45)]. To express this tensor in any other coordinates (e.g. 
end-point cartesian coordinates) it is sufficient to know the 
geometric relation between coordinate frames, e.g. Eqs. (A15) 
and (A16). Differentiating these equations yields the 
configuration-dependent relation between joint velocity and end- 
point velocity, v 

v=Jr  (A49) 

An incremental change in kinetic energy will be the same in 
all coordinates, and this can be used to determine the relation 
between joint momentum and end-point momentum, p 

dEk = hhtta = dpW = dptJta, (A50) 

dh=J'dp. (A51) 

At any given configuration, the Jacobian is constant and the 
differential relation of Eq. (15 I)may be integrated to yield the 
transformation: 

h=J ' p .  (A52) 

The relation between the end-point mobility tensor, W, and 
the joint-coordinate mobility, Y, is obtained using Eqs. (A49), 
(A45), and (A52) 

v = Wp = JYJ'p, (A53) 

W : J Y J  t. (A54) 

The physical meaning of the end-point mobility tensor is that 
if the system is at rest an applied force will produce an 
acceleration vector equal to the force vector premultiplied by the 
mobility tensor. At rest, dO~dr=O, thus from Eqs. (A49) and 
(A45): 

dv/dt = J dto/dt , (A55) 

do~/&= Y dh/dt. (A56) 

Because the mobility tensor Y is positive definite, Eq. (A45) 
shows that at rest, h=0. As a result, Ek=0 [Eq. (A41)] and using 
Eq. (A22) in Eq. (A43) yields 

dh/dt=jtF . (A57) 

Combining (A55), (A56), and (157) 

dv/dt=JYJtF = W F .  (A58) 
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