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ABSTRACT 
Physical interaction with tools is ubiquitous in functional 

activities of daily living. While tool use is considered a 

hallmark of human behavior, how humans control such physical 

interactions is still poorly understood. When humans perform a 

motor task, it is commonly suggested that the central nervous 

system coordinates the musculo-skeletal system to minimize 

muscle effort.  In this paper, we tested if this notion holds true 

for motor tasks that involve physical interaction. Specifically, 

we investigated whether humans minimize muscle forces to 

control physical interaction with a circular kinematic constraint.  

Using a simplified arm model, we derived three predictions 

for how humans should behave if they were minimizing 

muscular effort to perform the task. First, we predicted that 

subjects would exert workless, radial forces on the constraint. 

Second, we predicted that the muscles would be deactivated 

when they could not contribute to work. Third, we predicted 

that when moving very slowly along the constraint, the pattern 

of muscle activity would not differ between clockwise (CW) 

and counterclockwise (CCW) motions. 

To test these predictions, we instructed human subjects to 

move a robot handle around a virtual, circular constraint at a 

constant tangential velocity. To reduce the effect of forces that 

might arise from incomplete compensation of neuro-musculo-

skeletal dynamics, the target tangential speed was set to an 

extremely slow pace (~1 revolution every 13.3 seconds). 

Ultimately, the results of human experiment did not support the 

predictions derived from our model of minimizing muscular 

effort. While subjects did exert workless forces, they did not 

deactivate muscles as predicted. Furthermore, muscle activation 

patterns differed between CW and CCW motions about the 

constraint. These findings demonstrate that minimizing muscle 

effort is not a significant factor in human performance of this 

constrained-motion task. Instead, the central nervous system 

likely prioritizes reducing other costs, such as computational 

effort, over muscle effort to control physical interactions. 

 

1 INTRODUCTION 
Many of the motor actions performed in our daily lives 

involve physical interaction. And yet, our knowledge of human 

motor control results largely from studies focused solely on free 

motion. Neural control of physical interaction is under-studied 

largely due to the fact that physical interaction is vastly more 

complex than free motion. Object interaction introduces 

bidirectional forces that pose a new challenge, absent in free 

movements [1–3]. Furthermore, a tool may have complex 

internal dynamics (e.g., a circular power saw) which may 

change in response to forces from the human (friction increases 

with applied normal force). Intermittent contact also introduces 

switching between discrete regimes of continuous dynamics 

[4,5].  

Even though teasing out the control strategies humans use 

for physical interaction can be challenging, the need is 

significant and widespread. For instance, the ultimate goal of 

rehabilitation and assistive technology is to increase the number 

of activities of daily living that an individual can perform 

independently. A vast majority of these tasks require physical 

interaction with a tool or object, such as brushing teeth, 
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buttoning a shirt, opening a door, walking etc. To repair or 

replace such control in impaired humans, a basic understanding 

of how unimpaired humans control such interactions is first 

needed. 

Knowledge of how humans control physical interactions is 

similarly important for robotic systems where a human is in the 

loop. Such insight would aid the design of teleoperation 

systems where humans must interact with an unknown physical 

environment through a robotic device for applications in space 

and disaster relief. Additionally, understanding human control 

of interaction is necessary in cases where the human must 

physically interact either directly with a robot or indirectly 

through a shared object (e.g., each holding the end of a table). 

Especially when performing cooperative tasks, it would be 

ideal for the robot to interact with objects as humans do, such 

that the behavior is more legible and predictable to humans [6]. 

At the very least, this requires a competent model of how 

humans control physical interactions. 

To render the study of tool use manageable, a task of 

intermediate complexity is needed. Physical interaction with a 

kinematic constraint is a key intermediate point between simple 

reaching and complex tool use. Kinematic constraints introduce 

many challenges of complex tool use. For instance, they may 

evoke instabilities not present in free movements [7]. They also 

profoundly change the multi-joint interaction torques that 

confront the neural controller. Moreover, many tools introduce 

kinematic constraints. For example, a simple lever imposes a 

circular constraint on hand motion but assists the motion by 

enhancing applied force. Continuous circularly-constrained 

rotation is required by tools such as a traditional coffee-mill and 

a yarn winder. Thus experimental and theoretical studies of how 

humans manually interact with a circular kinematic constraint 

provide a first step towards understanding complex tool use and 

the human control of physical interactions. 

In previous work, Russell and Hogan showed that when 

humans operate a frictionally loaded crank in a vertical plane, 

they exert forces normal to the crank [8]. Such forces are 

considered workless as they do not contribute to motion or 

mechanical work. This finding suggests that humans use a 

control strategy that takes advantage of motion constraints to 

reduce required effort. The question is, what form of effort or 

cost do humans reduce when controlling physical interactions? 

Ohta and colleagues similarly found that when rotating a 

crank in a horizontal plane, humans exert workless forces [9]. 

To determine what criterion humans might optimize to control 

interaction, they compared human experimental data with data 

simulated with a variety of optimality criteria. Their results 

suggest that subjects minimized a combined criterion of the 

change in hand contact force and the change in muscle force. 

However, it is also possible that while subjects attempted to 

reduce muscle force, non-minimal muscle forces resulted from 

imperfect compensation for neuro-musculo-skeletal dynamics. 

In this paper, we further investigated if humans minimize 

muscle forces to control physical interaction with a circular 

kinematic constraint. First, we used a simplified arm model to 

derive predictions for the existence of workless forces and 

specific characteristics of muscle activity consistent with the 

hypothesis that humans reduce muscle effort. Next, we 

conducted an experiment to test whether human subjects 

exhibited the same behavior as predicted by our model with 

minimized muscle effort. In the human experiment, we 

instructed subjects to move a robot handle around a virtual, 

circular constraint at a constant tangential velocity in both 

clockwise (CW) and counter-clockwise (CCW) directions. To 

reduce the effect of forces that might arise from incomplete 

compensation of neuro-musculo-skeletal dynamics, the target 

tangential speed was set to an extremely slow pace (~1 

revolution every 13.3 seconds). This allowed us to assume that 

subjects moved around the constraint under quasi-static 

conditions.  

 

2 MODEL-BASED PREDICTIONS OF MINIMIZING 
MUSCULAR EFFORT 

Exerting muscular force without doing work consumes 

metabolic energy, so we might expect workless forces to be 

minimized. However, exerting such seemingly unnecessary 

forces on a kinematic constraint can actually reduce muscular 

 
 
Figure 1. In this simplified two-link arm model, the moment 

arms of all muscles are assumed to be constant. The links of the 

arm are of equal length (30cm each). The center of the circular 

constraint (radius = 10cm) is aligned with the shoulder joint and 

45cm in front of the shoulder joint. Colored radial lines depict 

reversal positions for the 3 muscle types. Dark and light shading 

denotes two distinct reversals for each muscle group. At these 

positions along the circular constraint, the respective muscle 

cannot generate tangential force. If subjects are minimizing 

muscle effort to perform this task, we predict that the respective 

muscles will be deactivated at these positions along the constraint. 
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effort while still achieving the task goal [10]. To demonstrate 

this point, we refer to a simplified model of a human arm with 

3 major muscle types: one-joint elbow muscles, one-joint 

shoulder muscles, and two-joint elbow and shoulder muscles 

(Figure 1). For any given posture of the upper limb, each 

muscle exerts hand force in a particular direction. Activating 

one-joint elbow muscles exerts a force vector directed from the 

hand to the shoulder joint. Activating a one-joint shoulder 

muscle exerts a hand force vector oriented along a line joining 

the elbow axis with the point of contact. The activation of two-

joint muscles exerts a force vector oriented parallel to the upper 

arm link, assuming that their moment arms about shoulder and 

elbow joints are all equal.  

In the position shown in Figure 1, the one-joint shoulder 

muscles project a force component along the tangent, as well as 

a substantial component along the radius. To strictly exert 

tangential hand force and avoid workless forces, the one-joint 

elbow flexors must be activated to offset or cancel radial hand 

force due to shoulder muscles. However, if workless forces are 

permitted, the same tangential hand force may be generated by 

one-joint shoulder muscles activated at the same level with no 

exertion of one-joint elbow muscles. This latter scenario 

requires less total muscular effort, regardless of whether such 

effort is measured by metabolic energy consumption, sum of 

squares of muscle stresses, muscle forces or joint torques, or 

any other reasonable measure.  

Thus, minimizing muscle effort requires the exertion of 

workless radial forces against the circular constraint. 

Accordingly, when muscles can only generate radial forces (i.e. 

they cannot generate tangential force needed to contribute to 

the task), they should be deactivated. Figure 1 shows the 

distinct hand positions around the constraint where the different 

muscle types cannot generate tangential force. These positions 

correspond to where the muscles reverse from shortening to 

lengthening and vice versa. In addition, activity of the 

corresponding muscle type should be minimized, regardless of 

the direction of motion around the constraint. In fact, the 

pattern of muscle activity should be identical, assuming static 

or quasi-static conditions. 

To summarize, if humans minimize muscular effort as they 

interact with the circular constraint, we would expect subjects 

to exhibit the following behaviors as derived from the model. 

First, we predicted that subjects would exert workless, radial 

forces along the constraint as previously reported [8,9]. Second, 

we predicted that the muscle activation would be minimal at the 

respective muscle reversal positions. Third, the pattern of 

muscle activity would not differ between CW and CCW motion 

around the constraint.  

 

3 METHODS 
 

3.1 Participants 
Three right-handed subjects (2 males and 1 female, mean 

age 26 ± 9.6 years) with no history of neurological or 

biomechanical disorders took part in the experiment. Subjects 

participated voluntarily and provided written informed consent 

according to procedures approved by the Institutional Review 

Board of the Massachusetts Institute of Technology. 

 

3.2 Experimental Setup 
Seated subjects held the handle of a planar horizontal 

robot, the InMotion 2 (Interactive Motion Technologies, 

Watertown, MA), with their right, dominant hand (Figure 2). To 

restrain shoulder and torso movements, subjects were strapped 

to the seat with a shoulder harness. A wrist brace discouraged 

wrist rotation, and a hanging sling supported the elbow against 

gravity. 

Subjects were instructed to move the robot handle around a 

virtual, circular constraint at a constant velocity. To simulate the 

constraint haptically, the robot controller implemented zero 

impedance along the tangent to a circle of radius of 10cm and 

an effective mechanical impedance of 3000N/m stiffness and 

100N-s/m damping in the radial direction normal to that circle.  

The endpoint position of the robot was recorded at 200Hz. 

The endpoint velocity was approximated by computing the 

backward difference of the position values. From the endpoint 

velocity, the tangential speed of the endpoint along the circular 

constraint was calculated. The subject’s current and target 

tangential speed were displayed on a computer monitor directly 

in front of the subject. The target tangential velocity was 

0.047m/s. As the radius of the constraint was 10cm, the target 

angular speed was 0.075 revolutions per second (i.e., 1 

revolution per 13.3 seconds). Force applied to the robot handle 

was measured at 200Hz with a 6-axis force transducer mounted 

on the robot handle (ATI Industrial Automation, Inc., Apex, 

NC). 

 

3.3 Experimental Design 
At the start of the experiment, subjects performed a 

familiarization trial with the virtual constraint to become 

acquainted with the robotic system. This trial lasted for 

       
Figure 2. Experimental Setup. The panel on the left shows how 

subjects held onto the planar InMotion 2 robot to perform the task. 

During the actual experiment, however, the view of the robot and 

subject’s arm was occluded by a wooden box draped with black 

cloth as shown in the right panel. Subjects were instructed to 

match their current tangential speed with a target value, both of 

which were displayed to the subject on a computer monitor.  
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approximately 1 minute. Subjects then performed 4 

experimental trials. Each trial was 2 minutes long and consisted 

of approximately 9 revolutions. For 2 trials, subjects moved 

around the constraint in the clockwise (CW) direction and in 

the counterclockwise (CCW) direction for the other 2 trials. 

The order of these trials was randomized for each subject. 

 

3.4 Electromyographic (EMG) Measurements and 
Onset/Offset Detection 

To measure muscle activation levels, EMG signals were 

recorded from surface electrodes (Delsys, Inc., Natick, MA) 

placed on 6 muscles of the subject’s right upper extremity. 

Table 1 describes each muscle recorded. Placement location 

and orientation of surface electrodes were determined using 

guidelines from SENIAM, and standard clinical tests were used 

to confirm correct detection of each muscle [11]. EMG signals 

were collected at 1 kHz through an NI-USB-6343 data 

acquisition board (National Instruments, Austin, TX) with 

custom software developed in MATLAB (The Mathworks, 

Natick, MA).  

At the end of the experiment, subjects were instructed to 

lie on a padded surface and remain as relaxed as possible while 

EMG signals were sampled for approximately 30 seconds. 

From this sample, baseline resting activity in each channel of 

the EMG system was estimated. These measures served to 

evaluate the appropriateness of signal levels of the data after 

collection. The EMG signals during the familiarization trial 

were visually inspected to verify that the signals were not 

contaminated with excessive noise or movement artifact. 

Electrodes were adjusted as necessary based on EMG signals 

from this familiarization trial but were not adjusted after 

collection of experimental data began. 

 We predicted that muscle activity would be minimal at the 

corresponding muscle reversal positions along the circular 

constraint. To accurately test this prediction, it was important to 

correctly detect when each muscle was on and off from the 

EMG signals. One popular method for determining muscle 

onset involves detecting when the amplitude of a rectified and 

low-pass filtered EMG signal exceeds a threshold value set 

above baseline activity [12]. However, the low-pass filter 

smooths the EMG signal, such that the exact onset of muscle 

activity becomes difficult to detect. In fact, onset detection is 

sensitive to the parameters used for the low-pass filtering. 

Additionally, examination of the low-pass filtered signals to 

determine muscle onsets can be susceptible to bias from the 

individual inspecting the data. Thus, we used a statistics-based, 

double-threshold detection algorithm [13]. Compared to using a 

single threshold, this method has been shown to have less error 

in detecting the onset of muscle activity [14]. In addition, the 

performance of the double-threshold method degrades at a 

slower rate as signal-to-noise ratio of the EMG signal decreases 

[14]. With the double-threshold method, the EMG signals were 

transformed into binary signals. In these signals, a value of 0 

indicated that the muscle was not active, and a value of 1 

indicated that the muscle was active. 

 

3.5 Data Processing and Dependent Measures 
While data from the robot and EMG were collected 

through different systems, a trigger signal sent from the robot to 

the EMG data acquisition system was used to synchronize the 

two sets of acquired data. Radial forces and the binary muscle 

 
Figure 3. Average radial forces over angular position on the constraint for individual subjects. The thick lines show the average radial force at 

each position, and the shaded regions represent ± 1 standard deviation. The vertical lines indicate the muscle reversal positions as detailed in 

Table 1. The 0° position corresponds to 3 o’clock as shown in Figure 1. Positive radial forces are tensile, away from the center of constraint and 

vice versa. Consistent with the hypothesis that subjects minimize muscles effort, subjects exerted radial forces, even though they do not 

contribute to work in this task.  

 

Muscle Name Type Reversal Positions 

Brachioradialis One joint – elbow  90°, 270° 

Biceps Brachii Two-joint 
57.9°, 229.2°  

Triceps Brachii (Lateral Head) Two-joint 

Anterior Deltoid One joint – shoulder  

122.1°, 310.8° Pectoralis Major One joint – shoulder 

Posterior Deltoid One joint – shoulder  

Table 1. Muscles recorded with EMG and the corresponding 

positions along the circular constraint where they should be 

deactivated to minimize muscle effort. 
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activation signals were parsed into revolutions based on the 

angular position of the robot handle around the circular 

constraint. Only full revolutions were included in the analysis 

in order to exclude transient effects at the beginning and end of 

each trial. For each subject, approximately 16 revolutions were 

analyzed for each direction. 

To test our predictions, we performed the following 

analysis across all subjects in each of the two conditions (CW 

and CCW rotation). To assess if subjects exerted workless 

forces as predicted, the average radial force for each position on 

the constraint (between 0° and 360°) was calculated. For each 

binary muscle activation signal, the percentage of revolutions 

where each muscle was activated was calculated for each 

position on the constraint. We predicted that the percentage of 

revolutions where the muscle was active would be low at the 

respective muscle reversal positions, regardless of movement 

direction. Given the slow speed, we also expected this 

distribution of the percentage of muscle-active revolutions to be 

the same in each direction of movement around the constraint. 

 

4 RESULTS 
If humans minimize muscular effort as they interact with 

the circular constraint, we expected them to exert workless 

forces. Figure 3 shows that subjects did exert such radial forces 

as predicted.  

We posited that the exertion of workless forces is due to 

the deactivation of muscles when they cannot contribute work 

(i.e. they cannot generate hand force tangential to the 

constraint). Thus, muscle activation at the corresponding 

reversal positions was expected to be zero.  However, Figure 4 

shows that subjects consistently did not deactivate muscles at 

the predicted positions. Moreover, the muscle activity at these 

positions was not even consistently at a minimum value (Figure 

5).  

It is also important to remember that the speed at which 

subjects moved along the constraint was extremely slow. 

Subjects were instructed to move with a tangential speed of 

0.047m/s. Overall, subjects were able to maintain a tangential 

speed close to the target value. The average tangential speed 

across subjects was 0.043m/s in the CW direction and 0.041m/s 

in the CCW direction. There were, however, significant 

fluctuations in their tangential speed within each trial. The 

average coefficient of variation of tangential speed across 

subjects was 35.49% in the CW direction and 39.83% in the 

CCW direction. While subjects had difficulty moving with a 

constant tangential speed as instructed, they still moved about 

the constraint at a very slow rate. Because of this slow speed, it 

was assumed that subjects moved under quasi-static conditions. 

Hence, we expected that subjects would exhibit the same 

muscle activation patterns in both CW and CCW directions. 

Figure 5 shows that counter to this prediction, muscle 

activation was different in each movement direction. This was 

especially evident from the activity at the muscle reversal 

positions. At these positions, the percentage of revolutions 

where the muscle was active was expected to be equal, but this 

was not the case. The most prominent example was the 

difference between motion directions in the activation of the 

triceps brachii at its reversal position of Subject 2. 

5 DISCUSSION 
If humans minimize muscular effort as they interact with a 

circular constraint, we predicted that subjects would deactivate 

muscles when they could not contribute to the task (i.e. 

generate force tangent to the constraint). Consequently, subjects 

would exert workless, radial forces. Consistent with prior 

research, subjects exerted workless radial forces on the 

constraint. They did not, however, deactivate muscles when 

they could not contribute to the task.  

 
 
Figure 4 Percentage of the revolutions where the muscle was activated at respective reversal positions. Data from each subject is represented by 

a different shape (circle for Subject 1, triangle for Subject 2, and square for Subject 3). The dotted lines indicate the muscle reversal positions 

specific to each muscle type. We predicted that muscle activity should be minimal at these reversal positions where they cannot contribute work. 

Contrary to this prediction, subjects consistently did not minimize muscle activation at these points. 
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It is possible that failure to inactivate muscles at these 

positions might result from addressing other aspects of 

performance, such as a perceived need to stabilize limb posture 

by antagonist muscle co-activation. If this were the case, we 

would expect muscle activations to at least reach a local 

minimum at the expected positions. However, they did not. 

Regardless of how muscular effort is quantified, be it metabolic 

energy consumption, sum of squares of muscle stresses, muscle 

forces or joint torques, our results showed that humans did not 

minimize muscular effort to control physical interaction in this 

task. Furthermore, subjects did not produce the same pattern of 

muscle activity in the CW direction as in the CCW direction as 

predicted. Together, these results demonstrate that minimizing 

muscle effort is not a significant factor in human performance 

of this constrained-motion task. 

It is possible that the simplifying assumptions in the model 

influenced the estimation of the muscle reversal positions. First, 

we assumed that all muscles had constant moment arms. In 

reality, these moment arms change with joint configuration. 

Second, we assumed that the length of each arm link was 30cm. 

However, it is important to note that the muscle reversal 

positions for the one-joint elbow muscles do not depend on 

muscle moments arms or link lengths (the latter due to how 

subjects were positioned relative to the constraint). The muscle 

reversal positions for one-joint shoulder and two-joint muscles 

depend on link length. However, the link lengths measured 

from the 3 subjects changed the reversal positions by an 

average of only 1.7°. Thus, we submit that these modeling 

assumptions did not materially affect our predictions. Finally, it 

should be noted that the existence of muscle reversal positions 

is not limited to the two-link planar arm model we used. This 

analysis can readily be extended to kinematic chains with more 

degrees of freedom (as in the human arm). 

To determine whether muscles were on or off at these 

reversal points, we elected to use a double-threshold detection 

method on the raw EMG signals. This method has several 

 
 
Figure 5. Individual plots of the percentage of the revolutions where the muscle was activated for each angular position. The dotted lines 

indicate the muscle reversal positions specific to each muscle type. Subjects consistently did not minimize muscle activation at these points. 

They also exhibited different patterns of EMG activity in each movement direction. 
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advantages over the more common approach of rectifying and 

filtering the signals. First, our hypotheses were only concerned 

with whether a muscle was active or not, rather than the signals’ 

relative amplitudes. When the raw EMG signals were converted 

into a binary signal, activation could be measured as a simple 

proportion without the need to interpret arbitrary EMG signal 

amplitudes. That proportion provides an unbiased estimate of 

the probability that a muscle is active. Second, the double-

threshold method is an unbiased, probability-based approach to 

detecting the onset of muscle activation. Thresholds for the 

detection process were calculated based on signal strength and 

an underlying statistical model of the EMG signal rather than 

selected at the discretion of the researcher. If the signals were 

filtered and/or a single-threshold detection were employed, 

sections of filtered data where the activation level was 

ambiguous might be vulnerable to potential bias from the 

researcher. Finally, a double-threshold method is more sensitive 

to the onset and offset of muscle activations compared to single 

threshold methods.  

While optimization is an appealing way to describe the 

basis of human coordination, identifying the objective function 

is challenging. To minimize muscular effort, humans must have 

knowledge of the tangential and radial directions of the 

constraint. The combined optimization criterion of the change 

in hand contact force and the change in muscle force proposed 

by [9] similarly requires this knowledge. Hence, it is possible 

that our ability to minimize muscle effort is limited by our 

inability to construct such a detailed internal model of the task. 

This study focused on the strategies humans might 

extemporaneously use to control physical interaction. Thus, we 

did not rule out the possibility that subjects could develop a 

control strategy that minimizes muscle effort if given enough 

practice or explicitly trained to do so. Still, motions subject to a 

circular constraint are commonplace in daily life and should not 

require a lot of practice. It is therefore significant that the “off 

the cuff” approach that subjects used to control physical 

interaction in this task did not result in minimal muscular effort.  

Prior work of Kistemaker et al. has similarly shown that 

subjects do not prioritize the minimization of muscular energy 

in a force-field reaching task [15]. While subjects did not 

minimize muscular effort in our task, it is important to note that 

they still exerted workless forces. This observation offers 

insight as to what criterion humans may be optimizing to 

perform this task. One possible explanation is that subjects 

exerted workless forces as a consequence of optimizing 

“computational effort”. 

It is possible that reducing “computational effort” over 

“muscle effort” is a strategy that the central nervous system 

could use in order to minimize overall “effort”. Huang et al. 

showed that during force-field reaching adaptation, net 

metabolic power continues to decrease, even after muscle 

activity and antagonist coactivation reached an asymptote [16]. 

Nasseroleslami et al. also found that when interacting 

continuously with a complex dynamic object, humans learned a 

strategy that rendered the object’s behavior more predictable 

[17]. It was proposed that humans adopted this strategy to avoid 

excessive sensorimotor processing [18]. They did not minimize 

exerted forces or maximize smoothness of the object’s motion. 

To move around the circular constraint, subjects may have 

adopted a similar strategy of minimizing computational effort. 

To reduce the knowledge and information processing required 

to perform the task, the central nervous system may have used a 

combination of dynamic primitives (e.g., submovements and 

mechanical impedances) to control physical interactions 

[19,20]. This possible explanation for the exertion of workless 

forces remains to be investigated in future work. 

6 CONCLUSION 
We investigated whether humans minimize muscular effort 

to control physical interaction with a circular kinematic 

constraint. Consistent with this hypothesis, we predicted that 

subjects would exert workless forces. We further predicted that 

these workless forces would result from the deactivation of 

muscles when they could not contribute to work done in this 

task (i.e., at muscle reversal positions). Additionally, we 

predicted that muscle activity would be the same in each 

direction of motion. Ultimately, the results of our experiment 

did not support these predictions derived from our model with 

minimized muscular effort. While subjects exerted workless 

forces, they did not minimize muscle activation at the muscle 

reversal positions. Moreover, muscle activation patterns 

differed between CW and CCW motions about constraint. This 

finding suggests that the central nervous system prioritizes 

reducing other costs, such as “computational effort”, over 

“muscle effort” to minimize overall “effort”. 
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