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Manipulation of complex objects as in tool use is ubiquitous and has
given humans an evolutionary advantage. This study examined the
strategies humans choose when manipulating an object with underac-
tuated internal dynamics, such as a cup of coffee. The dynamics of the
object renders the temporal evolution complex, possibly even chaotic,
and difficult to predict. A cart-and-pendulum model, loosely mimick-
ing coffee sloshing in a cup, was implemented in a virtual environ-
ment with a haptic interface. Participants rhythmically manipulated
the virtual cup containing a rolling ball; they could choose the
oscillation frequency, whereas the amplitude was prescribed. Three
hypotheses were tested: 1) humans decrease interaction forces be-
tween hand and object; 2) humans increase the predictability of the
object dynamics; and 3) humans exploit the resonances of the coupled
object-hand system. Analysis revealed that humans chose either a
high-frequency strategy with antiphase cup-and-ball movements or a
low-frequency strategy with in-phase cup-and-ball movements. Coun-
ter to hypothesis 1, they did not decrease interaction force; instead,
they increased the predictability of the interaction dynamics, quanti-
fied by mutual information, supporting hypothesis 2. To address
hypothesis 3, frequency analysis of the coupled hand-object system
revealed two resonance frequencies separated by an antiresonance
frequency. The low-frequency strategy exploited one resonance,
whereas the high-frequency strategy afforded more choice, consistent
with the frequency response of the coupled system; both strategies
avoided the antiresonance. Hence, humans did not prioritize small
interaction forces but rather strategies that rendered interactions pre-
dictable. These findings highlight that physical interactions with
complex objects pose control challenges not present in unconstrained
movements.

NEW & NOTEWORTHY Daily actions involve manipulation of
complex nonrigid objects, which present a challenge since humans
have no direct control of the whole object. We used a virtual-reality
experiment and simulations of a cart-and-pendulum system coupled to
hand movements with impedance to analyze the manipulation of this
underactuated object. We showed that participants developed strate-
gies that increased the predictability of the object behavior by exploit-
ing the resonance structure of the object but did not minimize the
hand-object interaction force.

impedance; interaction force; motor skill; object manipulation; pre-
diction; resonance; rhythmic movements

INTRODUCTION

The use of tools has been essential in human evolution, and
a large variety of tools now enhance and augment our daily
actions. Tool-supported actions range from the simple swing-
ing of a hammer and cutting meat with a knife to more complex
or exotic actions, such as eating spaghetti and cracking a whip.
The latter tasks are challenging and require practice because
the objects themselves, spaghetti and whip, are flexible, hence
underactuated, i.e., have internal degrees of freedom that are
not directly controlled by the user. Another seemingly mun-
dane example is carrying a cup of coffee: the human manipu-
lates the cup that, in turn, exerts a force on the coffee that
exerts forces back on the cup and the hand. Complex interac-
tion forces arise among the hand, the cup, and the coffee.
Despite this complexity, humans are extremely skilled at in-
teracting with such underactuated objects. Our understanding
of how humans achieve such dexterity is still limited and
becomes an ever-growing barrier to current developments in
prosthesis control, brain-machine interfaces, and robotic reha-
bilitation.

Despite the abundant literature on the control of goal-
directed upper-limb movements, most studies have focused on
free movements without physical interaction, such as reaching
and pointing (Bhushan and Shadmehr 1999; Flash and Hogan
1985; Krakauer et al. 1999; Sabes 2000), or interactions with
rigid objects, such as grasping with isometric grip forces
(Flanagan and Wing 1997; Fu and Santello 2014). The control
of “complex objects,” which we define as objects with under-
actuated internal dynamics, i.e., nonrigid objects, has been
largely ignored. The few studies that examined the control of
complex objects have focused on the two classic control
models of balancing a pole and manipulating a linear mass-
spring system. For balancing a pole, one needs to stabilize an
inherently unstable inverted pendulum. Based on kinematic
measurements and mathematical modeling, different mecha-
nisms have been suggested, such as intermittent, continuous, or
predictive control, with forward or inverse models (Gawthrop
et al. 2013; Insperger et al. 2013; Mehta and Schaal 2002).
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Another set of studies on the inverted pendulum system fo-
cused on noise and delays to distinguish between the continu-
ous vs. intermittent nature of control (Cluff et al. 2009; Milton
2011; Milton et al. 2013). A linear mass-spring system has
served as a model to examine optimization criteria in human
control, such as generalized kinematic smoothness (Dingwell
et al. 2004), effort and accuracy (Nagengast et al. 2009), and
minimum acceleration with constraints on the center of mass
(Leib and Karniel 2012). Two studies compared the contribu-
tions of visual and haptic feedback, and their results high-
lighted the essential role of haptic feedback over visual feed-
back in controlling the object (Danion et al. 2012; Huang et al.
2007). Finally, another set of studies looked at the compression
of a buckling spring, modeling the buckling behavior with a
subcritical pitchfork bifurcation of the nonlinear dynamic sys-
tem, including integration of multisensory information with
different time delays (Mosier et al. 2011; Venkadesan et al.
2007).

All of these studies examined point-to-point movements, or
short sequences of discrete movements, in which the full
complexity of the dynamics of the system may not yet be fully
manifest. A more extended continuous interaction may reveal
more of the challenges arising from complex underactuated
dynamics. For instance, when a system is near an antiresonance
frequency, its evolution is very sensitive to small changes in
the input, rendering the behavior of the system chaotic and
essentially unpredictable in the longer term. Such small per-
turbations readily arise from the fact that human movements
are intrinsically variable. This presents a problem for the
widely held assumption that humans rely on internal models of
the manipulated object to select and execute a movement
policy (Danion et al. 2012; Dingwell et al. 2002; Flanagan et
al. 2006). How can humans learn an internal model of a
complex underactuated object that has a potentially unpredict-
able temporal evolution? How can humans control the behavior
of such objects? Relying on feedback control is largely insuf-
ficient for the manipulation of objects with complex dynamics
due to neural transmission delay. Despite these challenges,
humans skillfully manipulate complex objects of all degrees of
complexity. How humans achieve this is an open question.

Extending previous work by Sternad and colleagues (Bazzi
et al. 2018; Hasson et al. 2012a; Nasseroleslami et al. 2014;
Sternad and Hasson 2016), this paper investigates continuous
manipulation of an underactuated object with nonlinear inter-
nal dynamics. The task of moving a bowl-shaped cup with a
ball inside was implemented in a virtual environment, using a
cart-and-pendulum model to mimic the ball rolling in the
moving cup. Notably, one of our (Nasseroleslami et al. 2014)
previous studies demonstrated that the continuous evolution of
this system shows features of deterministic chaos. With the use
of mathematical modeling and simulation of the task dynamics,
this previous study examined the strategy that humans adopt
when manipulating this complex object in continuous rhythmic
fashion. Moving at an imposed frequency, participants chose
movement amplitudes that made the interaction easier to pre-
dict. Counter to expectation, interaction force and smoothness
were not minimized.

The present study examined the same task but extended the
question in two ways. First, rather than imposing a frequency
for the oscillatory movement, the present study prescribed the
movement amplitude, leaving frequency free to choose. The

task of choosing a frequency gave rise to new behaviors and
new questions because the resonance structure of the system
may now play a significant role in the choice of strategy.
Second, we extended the modeling of human control by in-
cluding the mechanical impedance of the hand. The previous
study on the same system only considered the dynamics of the
cart-and-pendulum system (Nasseroleslami et al. 2014). How-
ever, the object is in continuous interaction with the human,
whose neuromechanical properties are likely to influence the
cart-and-pendulum dynamics. Therefore, this study introduced
a simplified model of hand mechanical impedance interacting
with the cart-and-pendulum system.

Several studies on unconstrained movements have demon-
strated that humans tend to move in a way that minimizes
physical effort (e.g., Alexander 2000; Prilutsky and Zatsiorsky
2002). Extending these findings to the manipulation of com-
plex underactuated objects, our first hypothesis is that humans
seek to minimize the effort or specifically the interaction force.
We assessed this hypothesis by quantifying the root-mean-
square value of the interaction force between the object and the
hand. However, although demonstrated for free movements,
this principle may become less prominent when the manipu-
lated object presents additional challenges, specifically when it
develops increasingly erratic behavior that becomes hard or
impossible to predict. Therefore, we also tested the hypothesis
that humans adopt strategies that make the hand-object inter-
action more predictable (hypothesis 2). When interactions are
predictable, it is easier for humans to anticipate the object
motion and hence the force arising from the internal dynamics
of the object. Anticipating this “perturbing” force, subjects can
directly generate the appropriate interaction force to achieve
the desired movement. Conversely, unpredictable object be-
havior requires continuous correction and adaptation of the
hand movement, which may be tiring, both physiologically and
cognitively. Predictability of the object dynamics may, there-
fore, obviate computational effort and afford simpler internal
models to guide feedforward control. We assessed predictabil-
ity by quantifying mutual information between the hand-cup
interaction force and the object kinematics.

Addressing hypotheses 1 and 2 rendered insight into human
movement strategies (what do humans optimize), but they did
not inform how humans achieved these strategies. Such expla-
nation required closer analysis of the object dynamics. Numer-
ous studies on rhythmic movements have provided evidence
that resonance properties of the limbs or the object influence
behavior. For example, in walking, the preferred stepping
frequency maps onto the resonance frequency of the leg mod-
eled as a simple pendulum (Holt et al. 1990). A study of infants
in a “jolly jumper” showed that infants tune into the resonance
frequency of the jolly jumper (Goldfield et al. 1993). Rhyth-
mically swinging handheld pendulums of different mass and
length has demonstrated that humans have a tendency to
oscillate at the natural frequency of the hand-pendulum system
(Yu et al. 2003). One main advantage of moving at the
resonance frequency is its energetic efficiency: in oscillatory
systems at resonance, the ratio between the amplitude of the
movement output and the force input is maximal. Another
feature of oscillating at resonance has been shown by Good-
man et al. (2000) in a study on rhythmic limb movements.
Time series analysis using phase space embedding revealed
that the trajectories became more predictable when oscillating
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at resonance. However, that study focused on pendular limb
movements, and the applicability of its findings to the manip-
ulation of underactuated objects is unclear. We, therefore,
tested an additional hypothesis that in complex underactuated
object control, humans exploit the resonance structure of the
manipulated object (hypothesis 3). As the analyses showed, the
manipulated object together with the hand had not only one,
but also a second resonance frequency separated by an anti-
resonance frequency, a structure that will aid in interpreting the
results.

In the experiment, participants manipulated a virtual cart-
and-pendulum system at their preferred frequency with the
movement amplitude prescribed. To evaluate the strategies that
humans adopt, we mathematically examined the cart-and-
pendulum system coupled to a simple model of hand imped-
ance. This model-based analysis allowed us to assess alterna-
tive execution strategies, i.e., different values of frequency and
hand impedance that could be used to perform the task.
Interaction forces and the degree of predictability were calcu-
lated both experimentally and in simulation. Comparison of
human behavior with the mathematically derived results
showed that participants did not minimize interaction force but
favored strategies with high predictability. In addition, fre-
quency analysis of the coupled object-hand system showed that
the degree of predictability was closely related to the resonance
and antiresonance frequencies of the system.

EXPERIMENTAL PROCEDURES

Participants

Ten young adults with no self-reported neuromuscular pathology
volunteered for the experiment (mean age � 24.3 � 1.8 yr). All
participants performed the task with their dominant hand. They were
naïve to the purpose of the study and gave written, informed consent
before the experiment. All procedures were approved by the North-
eastern University Institutional Review Board.

Virtual Task

To test the three hypotheses, a virtual task mimicking the manip-
ulation of a bowl-shaped cup with a ball inside was developed.
Importantly, this system is underactuated, since moving the cup
causes movements of the ball, which simultaneously exerts forces on
the cup: the person moving the cup has to take into account these
indirectly controlled forces to obtain the desired movement of the cup.
A simplified model of a cup-and-ball was simulated in a virtual
environment with visual and haptic feedback via a robotic manipu-
landum. Participants were asked to move this virtual cup rhythmically
between two specified targets but were allowed to choose their
preferred frequency.

Mechanical Model

Similar to Hasson et al. (2012a, 2012b), Nasseroleslami et al.
(2014), and Sternad and Hasson (2016), the cup-and-ball system was
modeled as a ball sliding in a semicircular cup (Fig. 1A). The cup
motion was limited to one direction in the horizontal plane, without
any friction. Under the assumption that the ball does not roll but only
slides without friction between the cup and ball, the cup-and-ball
system was mathematically equivalent to an undamped pendulum
attached to a moving cart (Fig. 1B). The ball corresponded to the
pendulum bob, the horizontal position of the cup corresponded to the
cart position, and the arc of the cup corresponded to the semicircular
path of the pendulum. With this simple model, the full dynamics of

the task could be computed more easily, without sacrificing the
essential elements of the dynamics: underactuated and nonlinear.

Hence, the equations of the cart-and-pendulum motion are:

�mc � mp�X
�

� mpd[�̇2sin� � �̈cos�] � Finter � Fball � Finter

�̈ � �
Ẍ

d
cos� �

g

d
sin� , (1)

where X is the cart position, � is the pendulum angle, Finter is the force
applied by the human on the cart, and Fball is the force applied by the
pendulum (the ball in the conceptual model) on the cart. Parameters of
the system are the mass of the cart (mc), mass of the pendulum (mp),
the pendulum length (d), and the gravitational acceleration (g). The
following values were used: mc � 2.40 kg, mp � 0.60 kg, and
d � 0.45 m. These values were chosen because they rendered reso-
nance and antiresonance frequencies of the system that were well
within human motor capacities and within reach of participants. The
cart and pendulum masses were chosen to make the object light
enough to avoid fatigue. The ratio of cart and pendulum masses was
set to make the underactuated internal dynamics a prominent feature,
i.e., participants clearly felt the forces generated by the ball. For
lighter ball masses, the cart-and-ball system approximated a rigid
object.

Apparatus and Data Acquisition

The dynamics of the cup-and-ball system were simulated in a
virtual environment (Fig. 2). Participants were seated on an adjustable
chair in front of a screen and interacted with the virtual environment
via a 3-degree-of-freedom robotic manipulandum (HapticMaster;
Motekforce, Amsterdam, Netherlands; van der Linde and Lammertse
2003). The force applied by the participants on the handle of the
robotic arm (Finter in Eq. 1) controlled the position of the virtual cup
(X in Eq. 1). The movements of the robotic arm were restricted to
horizontal translations parallel to the participant’s frontal plane to
ensure a one-dimensional motion of the cup as in the model. Partic-
ipants felt the interaction force (system inertia and Fball in Eq. 1) via
the force feedback provided by the robotic manipulandum. A custom-
written C�� program based on the HapticAPI (Moog FCS Control
Systems) computed the ball kinematics and controlled the virtual
display as well as the force feedback.

The cup and ball movements were displayed on a 2.40 � 2.40-m
back-projection screen located 2.15 m in front of the participants. The
display consisted of two green, rectangular targets on a horizontal line
delimiting the displacement of the cup; a yellow semicircle repre-
sented the cup, and a small, white circle represented the ball (Fig. 2).
Although the cup was only displayed as a semicircle, there was no
restriction on the ball angle, and the pendular rotations could exceed
90° without the ball escaping the cup. The visual translation of the cup
was 4.0 times the physical displacement of the manipulandum. The
cup displayed on the screen was 7.5 times smaller than the physical
dimension of the cup (set by d) to have plausible dimensions and fit
the display. The force applied by the participants on the robotic arm
(Finter), the cup kinematics (position X, velocity Ẋ, and acceleration

Conceptual model: 
Ball in cup

Mechanical model: 
Cart and pendulum

A B
Fig. 1. Model of the task. A: conceptual model of the cup-and-ball system. B:
mechanical model of cup-and-ball dynamics as a cart-and-pendulum system.
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Ẍ), and the computed ball kinematics (angular position �, angular
velocity �̇, and angular acceleration �̈) were recorded at 120 Hz.

Experimental Task and Instructions

Participants were asked to move the cup rhythmically between two
targets located at a horizontal distance of 16.5 cm from one another
(physical distance between the centers of each target; Fig. 2A).
Participants were instructed to place the cup within the target rectan-
gle at each excursion so movement amplitude was prescribed. How-
ever, the scaled cup was 3 cm wide, whereas each target was 4.5 cm
wide; the peak-to-peak excursion of the physical cup oscillation could,
therefore, range from 15 to 18 cm and still satisfy the task. This
tolerance gave participants some leeway to develop their preferred
motion. Furthermore, participants were told that they could freely
choose their frequency of oscillation and that they could change it
throughout the experiment to arrive at their most preferred frequency.
Even though participants did not receive explicit restrictions on the
movement frequency, a demonstration of the task by the experimenter
and the emphasis to “move rhythmically” discouraged them from
extremely slow movements. Note that people do not necessarily prefer
to move as slowly as possible, even though this may save effort (Park
et al. 2017; van der Wel et al. 2009). No instruction was given
regarding the position of the ball within the cup, but participants were
informed that the ball could not escape the cup (i.e., the behavior was
that of a pendulum, attached with a string, rather than that of a loose
ball). However, due to the haptic feedback provided by the manipu-
landum, participants could not ignore the movement of the ball: the
ball movement affected the cart movement, as in a real system, and
participants felt and saw it. Note that this experimental design inten-
tionally refrained from specifying a single optimal task performance
but rather aimed to give insight into what participants preferred to do,
especially after some exploration and practice.

The experiment consisted of 5 blocks of 10 trials each. Each trial
lasted 45 s. The trials within a block were separated by a 15-s pause,
and the blocks were separated by a break of several minutes. At the
beginning of each trial, the cup was positioned at the center of the left
target, and the ball rested at the bottom of the cup.

Data Analysis

As the task could be achieved by multiple solutions, i.e., it had
redundancy, we distinguished between execution and the outcome or
result of the movement. Performance was quantified by variables that
fully described the kinematics of the system, i.e., amplitude and
frequency of cart and pendulum, whereas the outcome was quantified
by the task or result variables interaction force, predictability, and

resonance. Result variables were metrics that explicitly tested the
hypotheses.

Task performance and kinematic variables. The task instructions
elicited trajectories close to a sinusoid; therefore, the movements of
the cart (cup) were characterized by the amplitude (Ak) and the
frequency (fk) of each cycle k (i.e., each back-and-forth movement).
Ak was defined as the half-distance between the minimum and the
maximum of the cart position during cycle k. The cart period (Tk) was
defined as the time between two successive maxima of the cart
position; the oscillation frequency was fk � 1/Tk. In addition, we
quantified the relative phase between the cart and pendulum move-
ments by computing the time lag that maximized the cross-correlation
between the time series of the cart position and pendulum angle. The
resulting time lag was then converted into relative phase.

To detect the extrema in the cart position, the difference between
successive data points, i.e., velocity, was computed. Extrema were
detected as those values where the sign changed. To ensure robust
detection of the cart extrema, the cart position data were smoothed
with a zero-phase-lag, fourth-order, low-pass Butterworth filter with a
3-Hz cutoff frequency. Note that this smoothing was used only for
detecting the extrema.

Result variables. HYPOTHESIS 1: MINIMIZE INTERACTION FORCE.
The net force required to perform the task was estimated by the root
mean square of the continuous interaction force, RMSF:

RMSF�Finter� �
1

T�
0

T

Finter
2 �t�dt , (2)

where T is the duration of the trial. Note that this hypothesis is about
the hand-cart interaction force and not the overall force exerted by the
participants. In particular, muscular effort was not evaluated.

HYPOTHESIS 2: MAXIMIZE PREDICTABILITY. Predictability is a
mathematical concept that can be operationalized in several ways. We
opted to characterize the degree of predictability of the object dynam-
ics by the mutual information between the input and the output of the
system, i.e., the cart trajectory and Finter. Mutual information is an
information-theoretic metric that quantifies the statistical dependency
between two variables and thereby quantifies how much knowing one
of the variables reduces the uncertainty about the other. High mutual
information indicates a small degree of uncertainty (Cover and
Thomas 2012). In the present context, mutual information quantifies
the degree to which the long-term evolution of the interaction force
can be expected, i.e., predicted, if the cart trajectory is known. Unlike
cross-correlation, which is limited to linear relations between vari-
ables, mutual information assesses both linear and nonlinear depen-
dency. It is, therefore, more suitable for this nonlinear system. In
particular, mutual information has been commonly used to quantify

A

Robotic manipulandum

Participant

Screen

16.5 cm

3 cm 4.5 cm

B
Fig. 2. Experimental setup of the ball-and-cup task using virtual reality and force feedback. A: rendering of the task in the virtual environment: the robotic
manipulandum provided haptic feedback of the mechanical interaction with the object while the behavior of the system was displayed online on the
back-projection screen. The physical model used the distances shown on the figure, whereas the distances displayed on the screen were multiplied by a factor
of 4 for visibility. The cup displayed was 7.5 times smaller than the physical arc determined by the length of the pendulum. B: participant using the HapticMaster
to interact with the simulated cup-and-ball system. The position of the cup was controlled by the force exerted on the robot.
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predictability of weather and climate, which are modeled by chaotic
dynamical systems (DelSole 2004; Kleeman 2011).

The cart trajectory, which was close to sinusoidal, was represented
by its phase in state space, �(t) � arctan[Ẋ/(2 � f X)]. The interaction
force Finter(t) was used as defined above. The predictability measure
mutual information (MI) was, therefore:

MI��, Finter� � �� P��, Finter�ln� P��, Finter�
P���P�Finter��d�dFinter, (3)

where P denotes the probability density functions for �(t) and Finter(t).
Mutual information is a dimensionless quantity, and its unit depends
on the base of the logarithm that is used. Here, the natural logarithm
was used, and the unit of mutual information is the nat.

HYPOTHESIS 3: EXPLOIT RESONANCE. Determining the resonance
structure of the system requires analytical or numerical analysis of the
system dynamics and cannot be inferred from the behavioral data
alone. Therefore, hypothesis 3 will be addressed later in the modeling
and simulation section.

Data processing. For all kinematic and result variables, only the
data between t � 20 s and t � 40 s of each trial were analyzed to
eliminate transients at the beginning and end of the trial. As the
experimental data were compared with model simulations described
below, trials that significantly deviated from periodicity needed to be
excluded as the model assumed periodicity. Hence, when the standard
deviation of the oscillation frequency exceeded 10% of its mean, the trial
was excluded as this indicated significant deviation from the instructed
periodic movements. Similarly, a trial was excluded if the mean cart
excursion was �12 or �21 cm, as it did not satisfy the instructed
excursion (15–18 cm), even allowing an additional 3 cm of tolerance.
These relatively stringent inclusion criteria were adopted in postprocess-
ing only to enable meaningful comparison with the simulation study
reported below (the simulation assumed constant movement frequency
within a given amplitude range). They were not success/failure criteria for
the participants. One participant’s majority of trials did not satisfy these
criteria, and his entire data were eliminated from subsequent analysis.
From the remaining 450 trials of 9 participants, only 17 trials did not meet
these criteria. These 17 trials were not at the beginning of the experiment
but distributed across early and late trials. This indicated that the task did
not require practice, and performing with periodicity was not a challenge
per se.

The data processing and analyses were performed with MATLAB
(The MathWorks, Natick, MA) and Gnumeric. The numerical values
of the interaction force and predictability estimates for each experi-
mental trial were computed with MATLAB from the experimental
trajectories. Mutual information was calculated with the MATLAB
MIToolbox 2.1.2. Statistical comparisons were performed using t-
tests since the measures were normally distributed (confirmed by
Kolmogorov-Smirnov tests).

BEHAVIORAL RESULTS

Task Performance and Kinematic Variables

As a first overview of participants’ performance, Fig. 3
shows the frequencies (fk) adopted by participants plotted as a
histogram. To obtain a sufficiently large number of data, each
cycle, i.e., one back-and-forth movement, was a data point.
Two distinct strategies were observed: frequencies were con-
centrated either between 0.4 and 0.7 Hz (low-frequency strat-
egy) or between 0.9 and 1.8 Hz (high-frequency strategy). The
low frequencies were densely concentrated with a sharp peak at
~0.65 Hz, whereas the higher frequencies were distributed
more broadly. These two strategies were separated by a gap
between 0.7 and 0.9 Hz: only very few oscillations had a
frequency within this range. Four participants adopted the

low-frequency strategy, and four participants chose the high-
frequency strategy. One participant used low frequencies for
the 1st 35 trials and then switched to high frequencies; his 1st
35 trials were, therefore, put in the low-frequency strategy, and
the subsequent trials in the high-frequency strategy. All others
were consistent in their choice throughout their 50 trials,
excluding the very 1st trials that were exploration.

Figure 4 depicts a low- and a high-frequency strategy with
exemplary time series of the cart and pendulum positions of
two representative participants. For the low-frequency strategy,
the cart and pendulum movements were in-phase (the maxi-
mum angle of the pendulum was synchronized with the max-
imum position of the cart). In contrast, the cart and pendulum
movements of the high-frequency strategy were in antiphase
relation (the pendulum maximum angle was synchronized with
the minimum position of the cart).

Figure 5 shows how the kinematic variables A and f and
the relative phase between the cart and pendulum move-
ments changed over the 50 practice trials for the 2 groups,
i.e., 2 strategies. In overview, all kinematic variables tended
to show an initial transient and then reached a plateau
relatively early on.

Cart oscillation amplitude (Fig. 5A). The amplitude (A) of
the cart was relatively invariant throughout the whole experi-
ment in the low-frequency group, whereas for the high-fre-
quency group it only stabilized in approximately the last 20
trials. The mean cart amplitude in the last 20 trials converged
to similar values in both frequency groups: 8.8 � 0.1 cm in the
low-frequency group and 8.9 � 0.1 cm in the high-frequency
group. These values were within the instructed amplitude
range, although closer to the higher limit, showing that both
participant groups satisfied the task. The mean amplitudes over
the last 20 trials were not significantly different between
groups (P � 0.47).

Cart oscillation frequency (Fig. 5B). After initial exploration
in which all participants adopted relatively low frequencies
(~0.5 Hz in the very 1st trials), f stabilized after ~15 trials in
both groups. The low-frequency group arrived at a mean
movement frequency of 0.65 � 0.01 Hz (average and standard
deviations across the last 35 trials). The high-frequency group

Fig. 3. Distribution of frequencies adopted by all participants when manipu-
lating the virtual cup-and-ball system. Histogram represents the frequencies of
every single cycle of the 433 valid trials (total: 7,350 cycles). Note that the
x-axis is in log scale.
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adopted a mean movement frequency of 1.27 � 0.04 Hz (av-
erage and standard deviations across the last 35 trials), al-
though the variability across participants was much higher, as
already indicated by the broad distribution in Fig. 3. The mean
frequencies over the last 35 trials were significantly different
between groups (P � 0.01).

Cart and pendulum synchronization (Fig. 5C). In the low-
frequency group, the relative phase between the cart and
pendulum movements remained close to 0 for all trials, indi-
cating in-phase movements (average relative phase over all
trials: 4.92 � 2.71°). In the high-frequency group, after
abruptly transitioning from 0 to 180° in the 1st 5 trials, relative
phase stabilized at ~180°, indicating antiphase movements
(average relative phase over the last 45 trials: 181.9 � 4.47°).
No intermediate relative phase values were observed in any of
the experimental trials.

Result Variables and Hypothesis Testing

Figure 6, A and C, displays the evolution of the result
variables interaction force (RMSF) and mutual information
(MI) averaged over all participants across trials. The two
frequency strategies are again shown separately. Similar to the
kinematic variables, there is an initial change leading to a
plateau relatively early. To evaluate the hypotheses, the initial
5 trials were compared with the final 5 trials.

Hypothesis 1: interaction force. RMSF increased from
2.57 � 0.56 to 5.49 � 0.10 N in the low-frequency group and

from 5.48 � 1.59 to 9.09 � 0.38 N in the high-frequency
group between early and late trials. The increase was signifi-
cant in both groups (P � 0.001). This evolution suggests that
participants did not minimize interaction force, counter to
hypothesis 1. Instead, with practice they increased the exerted
interaction force. Furthermore, five out of the nine participants
chose the high-frequency strategy, which was associated with
significantly higher RMSF values. If minimization of interac-
tion forces had been the criterion, all participants should have
converged to the low-frequency strategy.

Hypothesis 2: predictability. MI between the interaction
force and the cart kinematics of the low-frequency group
increased from 1.25 � 0.05 nat in the 1st 5 trials to
1.44 � 0.06 nat in the last 5 trials. In the high-frequency group,
mutual information increased from 1.36 � 0.08 to 1.53 � 0.03
nat between early and late trials. The increase was significant
in both groups (P � 0.003), supporting hypothesis 2 that
participants sought to increase predictability of the system they
interacted with. Note that although the increase in MI seemed
modest, the maximum achievable value of MI was ~1.8 nat (for
achievable oscillation frequencies). Therefore, the observed
relative increases were important.

SIMULATIONS AND ANALYSIS OF THE RESULT SPACE

The results of the behavioral experiment provided support
for hypothesis 2 that humans strive to increase the predictabil-
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Fig. 4. Experimental cart and pendulum tra-
jectories. Representative trajectories of the
cart (top) and pendulum (bottom) from 1
participant who chose the low-frequency
strategy (A) and 1 participant who chose the
high-frequency strategy (B) are shown. With
the low-frequency strategy, the cart and pen-
dulum movements were in-phase, and the
pendulum oscillations were large. With the
high-frequency strategy, the cart and pendu-
lum movements were antiphase, and the pen-
dulum oscillations were smaller. �, Pendu-
lum angle; Ak, amplitude of each cycle k; Tk,
time between 2 successive maxima of the
cart position (X).
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Fig. 5. Evolution across trials of the experimental kinematic variables. A: amplitude (A) of the cart oscillations. B: frequency (f) of the cart oscillations. C: relative
phase between the cart movement and the pendulum movement (�). Note that the amplitude is defined as the half-distance between the cup extrema. Each of
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ity of the interaction when manipulating an inherently erratic or
unpredictable system. Conversely, the interaction force was not
minimized in this interactive task (counter to hypothesis 1). To
evaluate these findings further and to test hypothesis 3, we
compared the strategies adopted by participants with possible
alternative executions to shed light on priorities in human
control. To this end, model simulations were performed to
compute the result variables for alternative executions that
could have achieved the task.

Coupled Model

In a previous study, the task dynamics were analyzed by
considering the behavior of the cart-and-pendulum system
alone without including the controlling hand (Nasseroleslami
et al. 2014). However, this uncoupled model only partly
replicated our experimental data (see APPENDIX A). We, there-
fore, extended the model to include the continuous coupling
between the cart and the hand.

Mechanical model and forward dynamics. To capture the
dynamics of the task more accurately, the cart-and-pendulum
system was coupled to the hand dynamics (Fig. 7). The hand
dynamics was represented by an ideal force generator (force
Finput) in parallel with a spring (stiffness, K) and a damper
(damping coefficient, B). Finput(t) was the force required to
follow a desired trajectory [Xdes(t), Ẋdes(t)]. If the full dynamics
of the task, including the pendulum force, were perfectly
anticipated, participants would be able to generate an Finput
allowing the cart to follow exactly the desired trajectory
Xdes(t). In reality, however, it was unlikely that participants
learned the perfect model due to the pendulum force acting as
a perturbation. Therefore, the motion due to the generated
Finput(t) did not exactly track the desired cart trajectory, so that
the actual cart trajectory (X) differed from Xdes. The spring and
damper, which was a simplified model of hand impedance,

then served to resist this perturbation. Note that this model
represented the impedance at the level of the limb: K and B
corresponded to limb features and not to properties of the
involved muscles. The equations of motion of the coupled
model are

�mc � mp�Ẍ � mpd[�̇2sin� � �̈cos�] � Finter � Fball � Finter

�̈ � �
Ẍ

d
cos� �

g

d
sin� (4)

Finter � Finput � K�X � Xdes� � B�Ẋ � Ẋdes�.

Given the task instructions, the desired trajectory was a sinu-
soid Xdes(t) � A sin(2 � f t � �/2).

The coupled model was simulated with forward dynamics,
i.e., computing the system state variables X(t), Ẋ(t), �(t), and
�̇(t) and Finter(t) from a known Finput(t). Since Finput(t) could not
be measured experimentally, it was chosen to match the force
required to manipulate a rigid object of similar mass, i.e.,
Finput(t) � (mc � mp) Ẍdes(t). Humans can manipulate rigid
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Fig. 6. Evolution across trials of the result
variables. Evolution of the experimental (A
and C) and simulated (B and D) result vari-
ables root-mean-square interaction force
(RMSF) and mutual information (MI) across
trials is shown. Experimental variables were
computed from the measured time series.
Simulated variables were computed from time
series obtained by simulation of the coupled
model (see main text). Simulations were run
using the experimental values of the cart am-
plitude and frequency. Natural logarithm was
used, and the unit of MI is nat. Solid lines
represent the average over all participants in
each of the 2 frequency groups, and the
shaded areas represent 1 standard deviation.

Fig. 7. Model used to analyze the dynamics of the task in simulation. Forward
dynamics of the cart-and-pendulum system were coupled to a model of hand
impedance. X, cart position; �, pendulum angle; Finter, interaction force; Finput,
input force; K, hand stiffness; B, hand damping coefficient; Xdes, desired cart
position; d, pendulum length; mc, mass of the cart; mp, mass of the pendulum.
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objects very accurately, suggesting that they have a good
model of the task dynamics. The hand impedance parameters K
and B were considered constant during a trial.

Execution Variables

To evaluate the three hypotheses, one must first define a
strategy. This was defined by the set of execution variables that
participants directly controlled and that fully determined the
task outcome (and hence referred to as result variables). While
the cart oscillation amplitude (A) was prescribed in the exper-
iment, participants could freely choose three variables of the
coupled model: the movement frequency (f), the hand stiffness
(K), and the damping (B), referred to as execution variables.

Unlike the movement frequency, the experimental hand
stiffness and damping could not be measured directly but had
to be estimated to afford forward simulations. To this end, an
optimization was conducted that aimed to estimate the values
of K and B for which the simulated cart and pendulum
trajectories best resembled the experimental trajectories. The
optimization process and the cost criterion (C) are detailed in
APPENDIX B.

Simulation of Result Variables and Hypothesis Testing

As for the behavioral experiment, the simulation tested
the hypotheses by evaluating the result variables root-mean-
square interaction force (RMSF; Eq. 2) and mutual infor-
mation (MI) between the cart kinematics and the interaction
force (Eq. 3). To obtain the space of all executions spanned
by execution variables f, K, and B, forward dynamics sim-
ulation of the coupled model were run to generate the
profiles of the cup kinematics �(t) and Finter(t). With the use
of MATLAB Simulink, the simulation time was 45 s, but
only data from 20 � t � 40 s were analyzed to eliminate
transients. The two result variables, MI and RMSF, were
then calculated with MATLAB as for the experimental data.
These results then served to test hypotheses 1 and 2.

To evaluate hypothesis 3 (exploit resonance), a frequency
response analysis of the coupled model was conducted in
MATLAB. Because of the nonlinearity of the coupled cart-
and-pendulum and human hand system, classic frequency re-
sponse tools could not be used. However, the system could be
linearized assuming small pendulum angles. Although this
approximation was not valid for all frequencies, the linear
analysis allowed further insight into the behavior of the system.
In the frequency response analysis, only one of the execution
variables, f, was varied, whereas K and B were fixed to typical
values: one corresponding to the mean values of K and B
adopted by participants in the low-frequency group and the
other to the mean values in the high-frequency group (see
APPENDIX B for the identification procedure of experimental
values of K and B).

SIMULATION RESULTS

Figures 8A and 9A display the three-dimensional execution
space spanned by f, K, and B. For each combination or point in
this space, the result variables RMSF and MI were calculated
(resolution of f: 0.005 Hz; resolution of K: 2 N/m; resolution of
B: 1 N·s/m). The green shades denote the area of low interac-
tion force RMSF (Fig. 8A), and the pink shades denote the

areas of high MI or predictability (Fig. 9A), the hypothesized
strategies according to hypotheses 1 and 2, respectively. The
blue dots are the participants’ data, one point for each trial.
Note that the participants’ data points in the two figures are the
same to compare them with the two simulated result variables.
Figures 8B and 9B show a two-dimensional (2-D) contour map
of the same RMSF and MI, plotted for a constant value of
B � 10 N·s/m. Hence, this 2-D space only shows a subset of all
participants’ data points (for 8 � B � 12 N·s/m). The result
space for MI contains one area of very low predictability for
frequencies ~0.8 Hz (Fig. 9). This area coincides with an area
where the interaction force RMSF is low (Fig. 8); therefore, the
two hypotheses of interaction force minimization and predict-
ability maximization are mutually exclusive. Conversely, for
frequencies ~0.64 Hz and �1.20 Hz, predictability was high,
but the interaction force was high was high as well.

Hypothesis 1: interaction force. As seen in Fig. 8A, very few
experimental trials overlapped with low RMSF solutions that
separated the two frequency groups. Very few trials were centered
in the low interaction force/low predictability area, and two of
these data points were based on only a moderately good imped-
ance fit (light blue dots). The 2-D section in Fig. 8B shows the
modulation of RMSF for different frequency and stiffness com-
binations. Notably, the low interaction force solutions are indi-
cated at movement frequencies �0.5 Hz or between 0.7 and 0.9
Hz. The experimental data points clearly were not in these regions
and, therefore, did not support hypothesis 1.

In addition, the simulated time series of the model were
analyzed in analogous fashion to the experimental time series.
The simulated RMSF was computed from time series obtained
by simulation of the coupled model initialized with the exper-
imental values of the execution variables. Figure 6B displays
the evolution across trials of the simulated RMSF averaged
over all participants in each of the two frequency groups. The
significant increase in RMSF from early to late trials in both
groups was a further indicator that low interaction force was
not a priority. The simulated RMSF increased from 2.35 �
0.51 to 4.89 � 0.07 N in the low-frequency group and from
4.42 � 1.89 to 7.44 � 0.58 N in the high-frequency group
(P � 0.001). Note that despite some discrepancies between the
experimental and simulated RMSF, the general trends in their
evolution and even the magnitudes were remarkably similar,
supporting the adequacy of the coupled model and the esti-
mated values of K and B.

Hypothesis 2: predictability. According to Fig. 9A, none of
the participants chose a strategy located in the area of lowest
MI, i.e., low predictability (nonshaded areas). The two fre-
quency groups were clearly separated by the low MI area ~0.8
Hz. Figure 9B details the irregular pattern of MI for different
frequency-stiffness combinations, with adjacent regions of
high and low MI between 0.6 and 0.8 Hz. This fast change in
MI was likely due to the resonance structure of the system
detailed below. The more intricate variation of MI at higher
frequencies might be due to chaotic behavior. The data suggest
that participants adopted strategies with relatively high MI, i.e.,
high predictability.

Additionally, MI was computed from the time series of
the simulated data and is presented in Fig. 6D. MI increased
from 1.11 � 0.05 nat in the early (1st 5) trials to
1.30 � 0.03 nat in the late (last 5) trials in the low-fre-
quency group (P � 0.003). In the high-frequency group, the
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simulated MI increased from 1.21 � 0.07 to 1.29 � 0.02 nat
(P � 0.02). Again, note that the maximum value of MI was
~1.8 nat. Comparing this progression with the experimental
values (Fig. 6C) shows that both the time course and the
magnitudes of the MI simulated values were close to the
experimental values, supporting the adequacy of the coupled
model and the estimated values of stiffness and damping.
This simulation result strengthens the experimental results
that predictability was increased with practice.

Hypothesis 3: resonance. One essential feature of the task
dynamics is the resonance structure: the coupled system has
two resonance peaks and one antiresonance frequency or
dynamic zero between the two resonance frequencies. Fig-
ure 10 displays Bode magnitude and phase plots of the
linearized coupled model for two representative values of
hand impedance. System A was simulated with K � 100 N/m
and B � 10 N·s/m, values that were typical for the low-
frequency group. System B with K � 200 N/m and B � 15

N·s/m was typical for the high-frequency group. As the
responses of the two systems reveal, the resonance peaks
depend on the values of K and B. The panels for pendulum
angle show one clear resonant peak at 0.68 Hz for system A
and at 0.71 Hz for system B.

Surprisingly, at first sight, the second peaks at the higher
frequencies are hardly noticeable. This arises from the fact that
the simulation assumed that subjects generated a sinusoidal
predictive force Finput(t) intended to produce the desired cart
motion Xdes(t). This predictive force was based on an incom-
plete model of the object dynamics that considered only the
lowest-frequency mode of behavior, i.e., as though the pendu-
lum and the cart moved as one body, Finput � (mc � mp) Ẍdes.
This imperfect predictive force only partially compensated for
object dynamics, which was nevertheless sufficient to counter-
act the resonances of the object, especially at the higher
frequencies. Mathematically, the predictive force introduced
complex-valued zeros near the complex-valued poles that de-
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scribe the high-frequency resonance. These zeros tended to
cancel or “mask” the effect of the adjacent poles, converting a
sharp resonant peak into a broad region of nearly constant
magnitude.1

Importantly, the response of the cup displacement for both
systems shows a sharp valley, indicating the antiresonance at 0.74
Hz between the two resonances. Note that the antiresonance
frequency is identical in systems A and B, i.e., independent of the
values of K and B. The phase plots in Fig. 10 display the relative
phase between the input force and the cart movement (red line)
and the relative phase between the input force and the pendulum
movement (blue line). Comparison between these two curves
highlights that for low frequencies the cart and pendulum are in
phase, whereas for frequencies higher than the antiresonance
frequency, cart and pendulum motions are antiphase. In addition,
the relative phase between the input force and the cart movement
reveals that for frequencies outside of the two resonance frequen-
cies, the cart movement is antiphase with the input force. Con-
versely, over a small interval between the two resonance frequen-
cies, the relative phase between the input force and the cart
movement is changing.

For comparison of the resonant peaks of the model with the
experimental data, the distributions of the observed frequencies
in participants are shown in gray (Fig. 10). For the low-

frequency group (system A), the peak in the distribution is very
close to the resonance peak of the system. For the high-
frequency group, participants show a very broad distribution
that matches with the smeared-out resonance peak of system B.
Comparison between Figs. 9 and 10 reveals that the two
resonance frequencies of the system coincided with areas of
high MI. This suggests that the behavior of the system is easily
predictable when oscillating at a resonance frequency. Con-
versely, the antiresonance frequency coincides with a region of
low MI; therefore, the behavior of the system is hard to predict
when oscillating at or around the antiresonance frequency.
These results are consistent with hypothesis 3.

DISCUSSION

This study examined strategies that humans adopt when
manipulating objects with underactuated internal dynamics. To
date, the majority of research in motor neuroscience has
examined unconstrained movements in highly controlled ex-
perimental tasks to render interpretable data; only relatively
few studies have examined control of complex objects. How-
ever, everyday behavior is full of complex manipulations that
set humans apart from primates and other animals. The present
study focused on continuous physical interaction with a cart-
and-pendulum system, representing the simplified dynamics of
moving a cup of coffee. Participants had to move with a
prescribed amplitude but could choose their preferred fre-
quency. Importantly, in continuous interaction with the com-

1 With K � 100 N/m and B � 10 N·s/m, the high-frequency poles are
�1.87 � 6.72i, and the zeros are �1.67 � 5.53i (in rad/s). With K � 200 N/m
and B � 15 N·s/m, the high-frequency poles are �3.06 � 8.95i, and the zeros
are �2.50 � 7.77i (in rad/s). The symbol i denotes the complex number.
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plex object, the dynamics of this system is underactuated and
can exhibit erratic and unpredictable behavior. Such unpredict-
able dynamics poses significant challenge to any internal
model guiding the goal-directed manipulation.

With the use of both behavioral data and numerical analysis
of the cart-and-pendulum system coupled to a model of hand
impedance, we tested three hypotheses: humans minimize the
interaction force required to move the system (hypothesis 1);
alternatively, they maximize predictability of the system be-
havior (hypothesis 2); and/or they exploit the resonance struc-
ture of the system (hypothesis 3). Interaction force between
hand and cart was quantified by its root-mean-square value.
Predictability was operationalized by the mutual information
between the kinematics of the cart and the interaction force.
Exploiting resonance was tested by comparing the chosen
frequencies with the resonance structure of the system. Results
of the experiment showed that participants increased, not
decreased, the interaction force (counter to hypothesis 1),
whereas they increased predictability of the system with prac-
tice (consistent with hypothesis 2). Half of the participants
chose a strategy that had significantly higher interaction forces
while affording similarly high degree of predictability.

The results of the simulations gave further support that,
among alternative strategies (defined by values of movement
frequency and hand impedance that humans could adopt),
participants chose strategies with high predictability but not
with low interaction force. These results corroborate and gen-
eralize those obtained by Nasseroleslami et al. (2014) in a
similar experiment that prescribed movement frequency but
left amplitude free to choose. In addition, frequency response
analysis of the linearized coupled system showed that partici-
pants chose movement frequencies close to the resonance
frequencies of the system while avoiding the antiresonance
frequency (consistent with hypothesis 3). These findings dem-
onstrate that predictability is a control priority in complex
underactuated object manipulation, which takes precedence
over principles such as interaction force minimization. The fact
that results support both hypotheses 2 and 3 suggests that
predictability may be explained by the resonance structure of
the system. Therefore, manipulation of underactuated objects
cannot be understood simply by extending principles of free
movements or rigid object manipulation; underactuated object
manipulation constitutes a different class of tasks with different
control challenges.

Assumptions of the Coupled Model

To provide an entry to a quantitative understanding of this
complex task, an essential element in our approach was sim-
ulation of the task dynamics with only minimal assumptions
about the controller. We, therefore, coupled a simplified model
of hand impedance to the cart-and-pendulum system. This
coupled model approximated the experimental data more ac-
curately than a previous model with the cart and pendulum
alone (APPENDIX A). However, as this model went beyond the
physics of the task alone and included the human controller,
certain assumptions had to be made.

Invariance of input force. One first assumption was that the
input force (Eq. 4) was equal to the force required to move a
rigid object of the same mass as the cart-and-pendulum system;
furthermore, the amplitude, frequency, and phase of this input

force was the same sinusoidal signal during and across trials.
Although this is a reasonable initial assumption, it is likely that
humans learned to adapt their input force based on the per-
ceived interaction force and/or the cart displacement. As the
simulation kept the input force invariant, the desired cart
trajectory was not always accurately tracked, especially when
the hand impedance was low. A plausible next modeling step
would be to modulate the amplitude of the sinusoidal input
force based on the difference between the actual and desired
cart amplitude. Even though it is relatively straightforward to
include such an adaptation of the input force, this would
evidently make the model more complex and not necessarily
help to understand the data.

Invariance of hand impedance. A second simplifying as-
sumption was that the hand impedance was constant through-
out one trial. Given the task instruction and the virtual display,
the amplitude of the cart movement was the main concern for
participants, whereas the actual trajectory between the two
targets was secondary. Therefore, it could be speculated that
participants may increase their arm impedance close to the
targets to ensure accuracy in the amplitude but decrease im-
pedance during translation between targets. A sinusoidally
changing impedance might, therefore, better match experimen-
tal data. However, as with the modulation of input force, the
potential gain in realism would be at the cost of more param-
eters to identify. Therefore, constant impedance and constant
input force is a reasonable compromise between accurate
replication of experimental data and transparency of the model.

Predictability, Muscular Effort, and Antagonist
Cocontraction

The simulations reveal that high predictability and low
interaction force are nonoverlapping strategies, and the data
provide evidence that it is predictability that determines the
choice of control strategy. The finding that humans do not try
to minimize interaction force may seem to run counter to many
studies on unconstrained movements that have shown that
humans favor energy- or effort-efficient strategies (Alexander
2000; Nelson 1983; Prilutsky and Zatsiorsky 2002). It should
be pointed out that our force criterion only quantified the net
external force, i.e., interaction force. Although this external
force increased, it might be that higher predictability had a
secondary effect on decreasing internal muscular effort: when
the system dynamics are erratic, it is difficult to anticipate and
preempt the perturbing force of the pendulum by feedforward
control. The user may then rely on his/her hand impedance to
reject these perturbations and maintain the desired cart trajec-
tory. This requires increasing the impedance through coactiva-
tion of antagonist muscles, which results in higher muscular
effort without any consequences on the net external force.
Conversely, predictable object dynamics may enable partici-
pants to anticipate the perturbing interaction force and thereby
reduce effort due to cocontraction. Predictability can, there-
fore, afford a way to minimize the overall muscular effort.

The strongest evidence that force minimization was not an
objective was that half of the participants chose the high-
frequency strategy associated with higher forces than the low-
frequency strategy (Fig. 6). If effort were the main concern, all
participants should have chosen the lower frequency and lower
impedance (APPENDIX B). As mutual information was similar in
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both frequency groups, the low-frequency solution would have
decreased the overall effort and reconciled the predictability
and interaction force objectives. However, one point to note is
that the task required only relatively low forces, which may be
one reason why optimizing effort was not a priority. Testing
the same experiment with different masses for the cart-and-
pendulum system is a direction for future work.

Predictability, Error Correction, and Computational Cost

Another factor that may have influenced participants’
choices was that the low-frequency strategy was close to the
boundary of the low predictability zone (starting around 0.7 Hz
in Fig. 9) compared with the high-frequency solution that was
more robust or tolerant to variation in frequency. With the
low-frequency strategy, small variations could easily lead to
erratic behavior and perturbations that require correction. If
such error corrections were executed by the central nervous
system, then the computational cost would increase. Compu-
tational effort has been recognized and included as a cost in
several optimization studies (Ronsse et al. 2010; Todorov and
Jordan 2002). However, in these modeling approaches, com-
putational cost terms have remained unspecified placeholders
for unaccounted factors contributing to human control choices.
A series of studies by Sternad and colleagues have argued that
the human controller may exploit the stability properties of a
task to avoid computationally expensive corrections (Sternad
2017). With the task of rhythmically bouncing a ball with a
paddle, several experiments provided robust evidence that
human subjects learned to attain dynamic stability, such that
small errors passively decayed, obviating the need for explicit
corrections (de Rugy et al. 2003; Schaal et al. 1996; Sternad et
al. 2001). When applying larger perturbations, additional cor-
rections were evidenced, although the signature of dynamic
stability was still visible (Siegler et al. 2010; Wei et al. 2007,
2008). In a similar spirit, mathematical and empirical studies of
a throwing task showed that humans seek solutions that are
tolerant to error and noise, therefore, requiring fewer correc-
tions (Cohen and Sternad 2009; Sternad et al. 2011, 2014).
Predictability of the interactive dynamics of complex object
manipulation may again be a manifestation of human control-
lers seeking to simplify the control task.

Resonance/Antiresonance Structure, Effort, and
Predictability

Did participants choose to move at resonance peaks to
reduce effort? As Fig. 10A shows, participants who moved the
cart and pendulum in phase could take advantage of the
low-frequency resonance to reduce effort but had to exert
precise control of frequency to avoid the nearby antiresonance
frequency. Participants who chose the antiphase strategy ex-
pended more muscular effort due to the higher frequency of
antiphase motion and to the elevated stiffness and damping
they exhibited. However, the antiphase motion was available
over a much broader range of frequencies (Fig. 10B) and,
therefore, required much less precise control of frequency.
Furthermore, they were far away from the antiresonance fre-
quency or dynamic zero at 0.74 Hz.

Did participants prefer certain cup frequencies because they
were associated with specific relative phases between the cart
and the pendulum movements or between the input force and

the cart movement? Several studies on rhythmic bimanual
coordination have shown that humans prefer in-phase and
antiphase relations between two limbs over other phase rela-
tions (Kelso 1984; Schöner and Kelso 1988; Sternad et al.
1992, 1996). In the present experiment, participants also oscil-
lated the cart either in-phase (at low frequencies) or antiphase
(at high frequencies) with the ball movements and avoided
intermediate relative phases at the antiresonance frequency.
However, this observation does not imply that participants
chose strategies for their relative phase values. Except at
antiresonance, the task dynamics did not allow other relative
phases as the frequency response plots show (Fig. 10). The
entire frequency range �0.65 Hz corresponds to in-phase
coupling, but participants of the low-frequency group never-
theless all converged to a narrow area of high predictability
(Fig. 9). Similarly, the high-frequency group favored those
subsets of the frequency range with high predictability. In
addition, a large set of frequencies outside of the two resonance
frequencies correspond to antiphase coupling between the
input force and the cart movement (red line in Fig. 10). It is
reasonable to think that participants may prefer this antiphase
coupling between what they predict (input force) and what they
actually obtain (cart movement) over any other relative phase.
Indeed, antiphase coupling between force and movement is
what one gets in the very common situation of manipulating a
rigid object. However, if relative phase were the only concern,
participants’ data points would be spread over all of the
frequencies with antiphase coupling and not grouped over a
narrow frequency range. These observations support that po-
tential phase preferences alone do not account for our obser-
vations.

Why did participants avoid the antiresonance frequency? At
antiresonance, the force generated by the pendulum movement
(Fball in Eq. 4) exactly opposes the interaction force exerted by
the human (Finter in Eq. 4), resulting in zero displacement of the
cart. In addition, near the antiresonance frequency, the relation
between cart motion and input force undergoes a large and rapid,
almost discontinuous, phase shift, whereas the relation between
pendulum motion and input force does not (phase plot in Fig. 10).
Around the antiresonance frequency, the oscillations of the cart
and pendulum desynchronize very quickly and small variations
result in large changes in the direction of the perturbing force due
to pendulum motion. This makes the compensatory input force
that should be applied to obtain the desired cart movement hard or
impossible to predict. The results clearly showed that subjects
consistently avoided the antiresonance frequency and, implic-
itly, favored predictability.

Task-Dynamic Approach, Internal Models, and Predictability

Most computational studies on movement control start with
a hypothesis about the human controller. For example, several
studies of the pole-balancing task investigated specific hypoth-
eses about the neural control system, ranging from different
control models to the role of noise or sensory feedback (Gaw-
throp et al. 2013; Insperger et al. 2013; Mehta and Schaal 2002;
Milton 2011; Milton et al. 2013; Venkadesan et al. 2007). In
contrast, our task-dynamic approach shifted the emphasis to
understand first the task and its affordance while minimizing
assumptions about human neuromotor control (Sternad 2017).
Starting with a mathematical model of the task and analysis of
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its dynamics, the solution space can be derived and human
solutions can be evaluated. To make this mathematical ap-
proach transparent, a simplified model is advantageous. Here,
we reduced the fluid dynamics of the coffee to a single degree
of freedom. As with any virtual implementation, this may raise
the question whether the problem has become too simple and
whether the results will generalize to the real cup of coffee.
Recently, two theoretical studies have indeed analyzed the cup
of coffee system in its full physical complexity (Han 2016;
Mayer and Krechetnikov 2012). Comparison of these and our
studies may reveal the advantages and disadvantages of the
realistic vs. computationally simplified approach.

Our task-based approach does not contradict but comple-
ments controller-based approaches. When, for example,
Nagengast et al. (2009) studied optimal control for the manip-
ulation of a virtual mass-spring-damper system, they assumed
that participants had complete knowledge of the system dy-
namics. Similarly, Dingwell et al. (2002, 2004) showed that
participants manipulating a linear mass-spring system dis-
played behavior compatible with learning an internal model of
the object dynamics. However, underactuated objects, such as
our cup-and-pendulum system, pose a significant challenge due
to their possibly unpredictable dynamics, leading to an appar-
ent absence of correlation between the human action and the
resulting behavior of the system. Increasing the predictability
of object dynamics might, therefore, be a way to increase the
chance of acquiring an internal model.

APPENDIX A: LIMITATIONS OF A MODEL WITHOUT HAND
IMPEDANCE

In a previous study, the dynamics of the cup-and-ball task was
analyzed by looking at the behavior of the cart-and-pendulum system
alone without the controlling hand (Nasseroleslami et al. 2014). This
uncoupled model is depicted in Fig. A1, and the motion of the system
is described solely by Eq. 1. It is straightforward to simulate this
uncoupled model using inverse dynamics calculations: if the cart
trajectory X(t) and initial conditions of the cart and pendulum (X0, Ẋ0,
�0, and �̇0) are given, the pendulum trajectory �(t) and the interaction
forces Finter(t) can be computed using Eq. 1 and a numerical integra-
tion scheme for �. This uncoupled model has the advantage that it
does not require any assumptions about control by the human (con-
trary to the coupled model). The only assumption is about the
movement of the cart, which could reasonably be modeled by a
sinusoid X(t) � A sin (2 � f t � �/2) given the task instructions.

A first approach used this simple model to analyze the task in this
work. To test to what degree this model faithfully reproduced human
behavior, we ran inverse dynamics simulations to compute �(t) and
Finter(t). A separate simulation was run for each experimental trial based
on X(t) and initial conditions taken from experimental values of X0, Ẋ0,

�0, �̇0, and cart amplitude (A) and frequency (f). This afforded direct
comparison of the experimental and simulated trajectories of cart and
pendulum and the interaction forces. The cart initial conditions X0 and Ẋ0

were fixed by the assumed sinusoidal shape of X(t): X0 � A and Ẋ0 � 0.
Although all experimental trials started with the same nominal conditions
(immobile pendulum at 0° angle), trials contained a transient before
participants settled onto their approximate steady state with their chosen
frequency. Initial transients were excluded because the oscillation fre-
quency varied substantially during this stage. Therefore, the values of A,
f, and pendulum initial conditions �0 and �̇0 were the experimental
averages across all cycles within 20 � t � 40 s, as in the experimental
data analysis. The simulated cart, pendulum, and force profiles were then
compared with the experimental time series of the corresponding trial. A
simulation was run for each of the 433 experimental trials with their
respective values.

Figure A2 displays one representative example of cart and pendu-
lum trajectories X(t) and �(t) and the interaction force Finter(t) from the
two frequency strategies. For the high-frequency strategy, all three
simulated time series (cart position, pendulum angle, and interaction
force) closely matched their experimental counterparts. For the low-
frequency strategy, the experimental cart trajectory closely resembled
the simulated trajectory, but the pendulum trajectory and the interac-
tion force diverged after a few cycles. The experimental profiles were
close to periodic, whereas the simulated profiles differed at each
oscillation, developing complex, erratic (possibly chaotic) patterns.

To quantify the divergence, the root-mean-square (RMS) errors
between the experimental and simulated trajectories were computed.
Table A1 summarizes RMS error for each quantity X, Ẋ, �, �̇, and
Finter, expressed as percentage of its respective maximum value in the
corresponding experimental trial. In the high-frequency group, the
RMS error was small and fairly consistent across variables (median RMS
error ~10% of the variable maximum experimental value), indicating a
reasonably good match between the experimental and simulated profiles.
This uncoupled model was, therefore, a competent representation of the
cup-and-ball task for the high-frequency strategy. With the low-fre-
quency strategy, however, the RMS error varied greatly and reached 30%
of the maximum value for the experimental pendulum angle and angular
velocity (and interaction force to a lesser extent). These discrepancies
between experimental and simulated data demonstrate that the uncoupled
model did not represent the execution strategies adopted by the low-
frequency group sufficiently accurately.

A likely reason for the divergence between experimental and
simulated data is the assumption of a perfectly sinusoidal cart trajec-
tory in the simulations, whereas experimental trajectories exhibited
small deviations from this ideal shape. Given the sensitivity of the
cart-and-pendulum dynamics to initial conditions, small changes in
the participant’s movement could lead to significant changes in the
system evolution. These deviations of the experimental cart trajecto-
ries from a perfect sinusoid could have two main causes: the intrinsic
variability of human movements and the perturbations caused by the
internal dynamics of the object. The first cause results from the
ever-present human variability: even if the object were rigid or if there
were no object at all, humans are unable to repeat the same exact
movements. Although present in both frequency strategies, this vari-
ability could have different consequences, since the sensitivity of the
system to initial conditions is not constant.

The second cause, the perturbation forces created by the pendulum
movements, affected the cart trajectory because the human hand is not
an ideal position generator. Unexpected pendulum forces disrupted
hand and hence cart movement. Although this is again true for both
frequency strategies, the cart trajectory was likely less perturbed in the
high-frequency strategy because hand movements were faster, which
is often associated with a higher hand impedance. Higher impedance
would result in better resistance to external perturbations and lower
RMS error (Table A1).

Furthermore, Finter results from two different forces (Eq. 1): one is the
cart-and-pendulum inertial force, Finertia � (mc � mp) Ẍ, and the other is

Fig. A1. Model of the dynamics of the task. Inverse dynamics model of the
cart-and-pendulum system alone are shown. �, Pendulum angle; d, pendulum
length; Finter, interaction force; mc, mass of the cart; mp, mass of the pendulum;
X, cart position; Ẋ, cart velocity; X¨, cart acceleration.
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the pendulum force, Fball. The average ratio between the RMS pendulum
force and the RMS inertial force (computed for 20 � t � 40 s) was
0.70 � 0.16 in the low-frequency group and 0.32 � 0.05 in the high-
frequency group (averaged across all trials of all participants in each of
the 2 groups). Relative to the expected force (i.e., required to accelerate
the total system inertia, similar to the manipulation of a rigid object), the
magnitude of the unexpected perturbation (the pendulum force) was thus
much higher in the low-frequency group and was, therefore, less likely to
be resisted. Hence, the current study included the effect of hand imped-
ance on the dynamics of the cart-and-pendulum system.

APPENDIX B: ESTIMATION OF HAND IMPEDANCE IN THE
COUPLED MODEL

Unlike the movement frequency (f), the experimental hand stiffness
(K) and damping (B) could not be measured directly but had to be
estimated from the human data. To this end, an optimization was
conducted that aimed at finding the values of K and B for which the
simulated cart and pendulum trajectories most resembled the experi-
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Fig. A2. Comparison of experimental and simulated trajectories and force time series for the uncoupled model. Experiment (red) and simulation (blue) profiles
of the cart trajectory, pendulum trajectory, and interaction force for 1 trial of each frequency strategy. Experimental data correspond to 1 representative trial in
each of the 2 frequency strategies. Simulation data were computed from inverse dynamics of the uncoupled model, initialized with the experimental values of
amplitude (A), frequency (f), initial pendulum angle (�0), and initial pendulum velocity (�̇0). A: high-frequency strategy (A � 8.9 cm, f � 1.182 Hz, �0 � �0.31
rad, �̇0 � �0.05 rad/s). B: low-frequency strategy (A � 8.8 cm, f � 0.655 Hz, �0 � 0.79 rad, �̇0 � �0.08 rad/s).

Table A1. RMS error between experimental and simulated
trajectories and force time series for the uncoupled model

Low-Frequency Group High-Frequency Group

Median IQR Median IQR

rms�Xe � Xs�	 �Xe�
 0.10 0.04 0.08 0.02

rms�Ẋe � Ẋs�	 �Ẋe�

0.13 0.06 0.08 0.03

rms��e � �s�	 ��e�
 0.29 0.52 0.13 0.09

rms��̇e � �̇s�	 ��̇e�

0.31 0.39 0.11 0.07

rms�Finter
e � Finter

s �	 �Finter
e �
 0.22 0.29 0.12 0.04

Ratio of root-mean-square (RMS) error between experimental and simulated
data normalized by the maximum value for the cart and pendulum trajectories
and interaction force in both subject groups. Simulated data were obtained
from inverse dynamics simulation of the uncoupled model. Median and
interquartile range were computed over all 433 valid trials. �, Pendulum angle;
�̇, pendulum angular velocity; X, cart position; Ẋ, cart velocity; Finter, interac-
tion force; e, experimental; s, simulated; IQR, interquartile range.
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mental trajectories. For each combination of K and B, a 45-s forward
dynamics simulation of the coupled model was performed and com-
pared with the corresponding experimental trial. The continuous
variations in the cart amplitude (A) and/or frequency (f) in the
experimental trials were evidently not captured in the simulation as
constant desired cart amplitude/frequency was assumed. The simula-
tions used the average experimental values of A and f across all cycles
of the trial (20 � t � 40 s) to define the desired trajectory, Xdes(t) � A
sin(2 � f t � �/2), and the input force, Finput(t) � (mc � mp) Ẍdes(t).
However, the average amplitude and frequency were only represen-
tative of the experimental trial if they did not vary significantly
throughout the trial. This motivated the stringent inclusion criteria in
the analysis of the behavioral data.

All combinations of 10 � K � 350 N/m (step size 2 N/m) and 3 �
B � 50 N·s/m (step size 1 N·s/m) were tested to find the best fit. The
difference between the experimental and simulated trajectories was
quantified by the cost (C) of the normalized root-mean-square errors
of the four quantities X(t), Ẋ(t), �(t), and �̇(t):

C �
1

4� rms�Xe � Xs�
�Xe�


�
rms�Ẋe � Ẋs�

�Ẋe�


�
rms��e � �s�

��e�


�
rms��̇e � �̇s�

� �̇e�


� , (B1)

where the superscripts s and e stand for simulation and experimental,
respectively. Only the data within 20 � t � 40 s were included to
avoid confounding by transients (both for experimental and simulated
trials).

Although the movement frequency was fixed in the simulations,
experimental frequencies were not exactly constant within trials. Such
variations of the experimental frequency created a temporal offset
between the experimental and simulated trajectories, which could lead
to high RMS errors even when the two profiles were similar. To limit
this artifact, C was computed cycle by cycle, i.e., the RMS errors were
computed for each cycle k by time-aligning the experimental and
simulated trajectories of cycle k. Subsequently, they were averaged
over all cycles.

Across all trials, the median cost measured for the best impedance
fit of each trial was 0.104 with an interquartile range of 0.051. Table
B1 gives the ratio between the RMS error between experimental and
simulated time series and the maximum experimental value of the
corresponding trial for the state variables X, Ẋ, �, and �̇ as well as for
Finter. The median value of the RMS error was between 9 and 13% of
the maximum value, depending on the variable. Importantly, the error

was consistently low in both groups, unlike for the uncoupled model
above (see Table A1 in APPENDIX A).

The values of hand impedance were different between groups. The
comparison of stiffness and damping values between the two fre-
quency groups was performed with a Wilcoxon signed-rank test
because the data were not normally distributed. Both K and B were
significantly lower in the low-frequency group, with P � 0.0001 each.
This is consistent with the known fact that, for a similar task accuracy,
limb stiffness usually increases with movement speed.

These results are the basis for characterizing the experimental trials
with hand impedance. The coupled model with optimized K and B
reproduced experimental trajectory and force time series much more
accurately than the uncoupled model (especially for the low-fre-
quency group), thus confirming its better competence to analyze the
experimental task.
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Simulated data were obtained with forward simulation of the coupled model,
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